

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers
and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 3231

To link to this article: DOI: http://dx.doi.org/10.1007/978-3-642-
05031-2_1

URL: http://dx.doi.org/ 10.1007/978-3-642-05031-2_1

To cite this version: ADJIR, Noureddine , SAQUI-SANNES, Pierre De , RAHMOUNI,
Kamel Mustapha. Testing real-time systems using TINA. In : NUNEZ, Manuel, BAKER,
Paul, MERAYO, Mercedes G. Testing of software and communication systems : 21st
IFIP WG 6.1 international conference, Testcom 2009 and 9th international workshop,
Fates 2009, Eindhoven, The Netherlands, November 2-4, 2009. New York
: Springer, 2009, pp. 1-15. ISBN 978-3-642-05030-5

Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12041443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:staff-oatao@inp-toulouse.fr
http://oatao.univ-toulouse.fr/

Testing Real-time Systems Using TINA

Noureddine Adjir 1, Pierre de Saqui-Sannes2, Kamel Mustapha Rahmouni3

1 University of Saida - BP 138 – 20001 Ennasr Saida, Algeria

2 CNRS ; LAAS ; 7 avenue du colonel Roche , F-31077 Toulouse , France,
and Université de Toulouse ; UPS , INSA , INP , ISAE ; LAAS ; France

3 University of Oran –BP 1524 - El mnaouar 31000 Oran, Algeria
Adjir_nourd@yahoo.fr, pdss@isae.fr, kamel_rahmouni@yahoo.fr

Abstract. The paper presents a technique for model-based black-box
conformance testing of real-time systems using the Time Petri Net Analyzer
TINA. Such test suites are derived from a prioritized time Petri net made up of
two concurrent sub-nets specifying respectively the expected behaviour of the
system under test and its environment.We describe how the toolbox TINA has
been extended to support automatic generation of time-optimal test suites. The
result is optimal in the sense that the set of test cases in the test suite have the
shortest possible accumulated time to be executed. Input/output conformance
serves as the notion of implementation correctness, essentially timed trace
inclusion taking environment assumptions into account. Test cases selection is
based either on using manually formulated test purposes or automatically from
various coverage criteria specifying structural criteria of the model to be
fulfilled by the test suite. We discuss how test purposes and coverage criterion
are specified in the linear temporal logic SE-LTL, derive test sequences, and
assign verdicts.

Keywords: real-time system; Prioritized Time Petri Nets; conformance testing;
time optimal test cases.

1 Introduction

Real-Time systems are characterized by their capacity to interact with their
surrounding environment and to provide the latter the expected output at the right date
i.e. the timely reaction is just as important as the kind of reaction. Testing real-time
systems is even more challenging than testing untimed reactive systems, because the
tester must consider when to stimulate system, when to expect responses, and how to
assign verdicts to the observed timed event sequence. Further, the test cases must be
executed in real-time, i.e., the test execution system itself becomes a real-time system.

Model-based testing has been proposed as a technique to automatically verify that
a system conforms to its specification. In this technique, test cases are derived from a
formal model that specifies the expected behaviour of a system. In this paper, we
propose a technique for automatically generating test cases and test suites for
embedded real time systems based on Prioritized Time Petri Nets.

We focus on conformance testing i.e. checking by means of execution whether the
behaviour of some black-box system, or a system part, called SUT (system under

test), conforms to its specification. This is typically done in a controlled environment
where the SUT is executed and stimulated with input according to a test specification,
and the responses of the SUT are checked to conform to its specification.

An important problem is how to select a very limited set of test cases from the
extreme large number (usually infinitely many) of potential ones. So, a very large
number of test cases (generally infinitely many) can be generated from even the
simplest models. The addition of real-time adds another source of explosion, i.e. when
to stimulate the system and expect response. Thus, an automatically generated test
suite easily becomes costly to execute. To guide the selection of test cases, a test
purpose or coverage criterions are often used. The paper demonstrates how it is
possible to generate time-optimal test cases and test suites, i.e. test cases and suites
that are guaranteed to take the least possible time to execute. The test cases can either
be generated using manually formulated test purposes or automatically from several
kinds of coverage criterion—such as transition or place or marking coverage– of the
PrTPN model. The coverage approach guarantees that the test suite is derived
systematically and that it guarantees a certain level of thoroughness. We describe how
the real-time model checker selt and the path analysis tool plan of the toolbox TINA
have been used to support automatic generation of time-optimal test suites for
conformance testing i.e. test suites with optimal execution time. Such test suites are
derived from a PrTPN composed of two subnets specifying respectively the expected
behavior of the SUT and its environment. Especially, the required behaviour of the
SUT is specified using a Deterministic Input enabled and Output Urgent PrTPN
(DIOU-PrTPN). Time optimal test suites are interesting for several reasons. First,
reducing the total execution time of a test suite allows more behaviour to be tested in
the (limited) time allocated to testing; this means a more thorough test. Secondly, it is
generally desirable that regression testing can be executed as quickly as possible to
improve the turn around time between changes. Thirdly, it is essential for product
instance testing that a thorough test can be performed without testing becoming the
bottleneck, i.e., the test suite must be applied to all products coming of an assembly
line. Finally, in the context of testing of real-time systems, we hypothesize that the
fastest test case that drives the SUT to some state, also has a high likelihood of
detecting errors, because this is a stressful situation for the SUT to handle. To know
other advantages on Time optimal test suites, the reader can see [31].

The main contributions of the paper are: Re-implement the toolbox Tina and add
functionality to support the composition of PrTPN’s, definition of a subclass of
PrTPN from which the diagnostic traces of selt can be used as test cases; application
of time optimal paths analysis algorithms to the context of test case generation; a
technique to generate time optimal covering test suites.

The rest of the paper is organized as follows: Section 2 surveys related work.
Section 3 presents the LPrTPN model (syntax and semantics). In section4, we present
test case generation based on the DIOU-PrTPN model and we describe how to encode
test purposes and test criteria. Section 4 concludes the paper.

2 Motivation and Related Work

Among the models proposed for the specification and verification of real-time
systems, two are prominent and widely used: Time Petri Nets (TPN) [39] and Timed
Automata (TA) [2]. The TA formalism has become a popular and widespread
formalism for specifying real-time systems. It has a rich theory and is cited in
important research works e.g. fundamentals aspects, model checking, testing…etc.
TPN are characterized by their condensed expression power of parallelism and
concurrency, and the conciseness of the models. In addition, the efficient analysis
methods proposed by [5] have contributed to their wide use. Many other extensions of
Petri Nets exist - e.g. p-time Petri Nets [29] and timed Petri Nets [43] - but none of
them has the success of TPN. Much research works compare TPN and TA in terms of
expressivity w.r.t. language acceptance and temporal bisimilarity or propose
translation from TA to TPN or vice versa e. g. [3], [4], [7], [14], [18] and [37]. It was
shown in [14] that bounded TPN are equivalent to TA in terms of language
acceptance, but that TA are strictly more expressive in terms of weak timed
bisimilarity. Adding priorities to TPN (PrTPN) [7] preserves their expressiveness in
terms of language acceptance, but strictly increases their expressiveness in terms of
weak timed bisimilarity: it is proven in [7] that priorities strictly extend the
expressiveness of TPN, and in particular that Bounded PrTPN can be considered
equivalent to TA, in terms of weak timed bisimilarity i.e. that any TA with invariants
is weak time bisimilar to some bounded PrTPN, and conversely. The TPN state space
abstractions were prior to those of TA and TPN are exponentially more concise than
classical TA [14]. In addition, interestingly, and conversely to the constructions
proposed for model checking Prioritized TA the constructions required for PrTPNs
preserve convexity of state classes; they do not require to compute expensive
polyhedra differences [8]. Although, few papers propose TPN for testing real-time
systems (see, e.g. [1] and [38]). So, until this paper, no test tool based on TPN, in
particular conformance testing, is available. On the other hand, much work on model
based testing is based on TA or their extensions e.g. [15], [16], [17], [21], [24], [26],
[28], [31], [32], [33], [34], [35], [36], [40], [41], [42], [45]; and there exist many tools
for testing real-time systems based on TA more than ten years (see, e.g., [24], [31],
[36], and [40]).

Many algorithms for generating test suites following test purposes or a given
coverage criterion have also been proposed [29,22,18,13], including algorithms
producing test suites optimal in the number of test cases, in the total length of the test
suite, or in the total time required to execute the test suite. In this paper, we study test
suite generation inspired by the analysis technique used in the State-Event LTL
model-checker selt [8]. The schedules computed by the path analysis tool plan, in
particular the fastest schedules and the shortest paths, associated to the diagnostic
sequences (counterexamples), exhibited by selt, will be exploited to compute the
optimal-time test suites.

3 Modeling the System and its Environment

A major development task is to ensure that an embedded system works correctly in its
real operating environment and it is only necessary to establish its correctness under
the modelled (environment) assumptions (Figure 1(a)); otherwise the environment
model can be replaced with a completely unconstrained one that allows all possible
interaction sequences. But, due to the lack of resources it is not feasible to validate the
system for all possible (imaginary) environments. However, the requirements and the
assumptions of the environment should be clear and explicit. We assume that the test
specification is given as an LPrTPN composed of two subnets: the first models the
expected behaviour of the SUT, noted MSUT, while the second models the behaviour
of its environment, and noted ME (Figure 1(b)).

 (a) A SUT with its environment (b) The SUT model MSUT and its environment ME

Figure 1. A SUT with its environment. The SUT model MSUT and its environment ME

3.1 Labeled Prioritized Time Petri Nets

Time Petri Nets (TPN), introduced in [39], are obtained from PN by associating a
temporal interval [tmin, tmax] with each transition, specifying firing delays ranges for
the transitions. tmin and tmax respectively indicate the earliest and latest firing times
of the transition (after the latter was enabled). Suppose that a transition t become
enabled for the last one at the timeθ , then t cannot be fired before θ +tmin and it
must be done at the latest at θ +tmax, unless disabled by firing some other transition.
Prioritized TPN (PrTPN) extend TPN with a priority relation on the transitions; so a
transition is not allowed to fire if some transition with higher priority is fireable at the
same instant. Such priorities increase the expressive power of TPN. Since we address
the testing of reactive systems, we add an alphabet of actions A and a labelling
function for transitions. A is partitioned in two separate subsets: input actions inA and

output actions outA . Inputs are the stimuli received by the system from the

environment. Outputs are the actions sent by this system to its environment. An input
(output) is post fixed by ? (!). In addition, we assume the existence of internal actions
denotedt ()At Ï . An internal action models the internal events of a system that are

not observed by the tester.

Let I+ be the set of nonempty real intervals with nonnegative rational endpoints.

For Ii +Î , ī represent its lower endpoint, and i- its superior endpoint (if it exists)

or¥ . For any ,R iq q+Î -& denotes the interval { }x x i xq q- Î Ù ³ .

ENVIRONMENT System
Under Test O!

I?

O!

I?

Syntax. Formally, a Labelled Prioritized Time Petri Net (LPrTPN in short) is a 9-
uplet ()0, ,Pre,Post , , , , ,P T m I A Lτp where:

- ()0, ,Pre,Post ,P T m is a Petri Net where P is the set of places, T is the set of
transitions, 0:m P +→ � is the initial marking and Pre, Post :T P +→ → N are the
precondition and post-condition functions.

- : IsI T +→ is the static interval function which associates a temporal interval
() IsI t +Î with every transition in the net. The rational ()sI t¯ and ()sI t- are the static

earliest firing time and the static latest firing time of t, respectively. In this paper,
intervals [[0,∞ are omitted and w in the right end point of an interval denotes ∞ .

- T T⊆ ×p is the priority relation, assumed irreflexive, asymmetric and transitive,
between transitions. 1 2 2 1 or t t t tf p means t1 has priority over t2.

- { }in outA A Aτ τ= ∪ ∪ is a finite set of actions

- :L T Aτ→ is the labelling function that associates to each transition an operation.

A marking is a function :m P +→ � . A transition t is enabled at marking
() iff Prem m t≥ . The set of transitions enabled at m are denoted by

() (){ }PreEn m t t m= ≤ .

The predicate specifying when k is newly enabled by the firing of an internal
transition t from marking m is defined by:

() () () ()() ()()(), Pre Post Pret mNS k k En m t t k En m t k t= ∈ − + ∧ ∉ − ∨ = .

The predicate specifying when k is newly enabled by the firing of a couple of
complementary transitions (),t t′ from marking m is defined by:

() () () ()() () ()() () ()()()(), , ' ' ' ' 't t mNS k k En m t t t t k En m t t k t k tPre Pre +Post Post Pre Pre′ = ∈ − + + ∧ ∉ − + ∨ = ∨ =

The sets of internal, input and output transitions of the net are defined respectively

by: (){ }/T t T L tτ τ= ∈ = , (){ }/in inT t T L t Aτ= ∈ ∈ and (){ }/out outT t T L t Aτ= ∈ ∈ (with

in outT T T T Tτ τ= − = ∪).

The set of environment model transitions which complement a transition t of the
SUT model is noted () { }if ! (resp. ?) then ? (resp. !)ECT t t t a a t a a′ ′= ∈ = =M .

A state of an LPrTPN is a pair (),e m I= in which m is a marking of the net and

: II T +→ , a partial function called the interval function, associates exactly a temporal

interval in I+ with every enabled transition ()t En m∈ . The initial state is ()0 0 0,e m I= ,

where 0I is SI restricted to the transitions enabled at0m . The temporal information in

states will be seen as firing domains, instead of intervals functions. The initial state
()0 0 0,e m D= of the LPrTPN of Figures 2 and 3.a is defined by:

0 0 0 0 0

8

0

: , and : 0

 Tidle

 0

m p q D t

t

s

≤
≤

≤

Semantics. The semantic of an LPrTPN)(0, ,Pre,Post , , , , , N P T m Is A Lτ= p is the

Timed Transition System ()0, , , ,N in outE E e A A= → where E is the set of states (),m I of

the LPrTPN and ()0 0 0,e m I= its initial state. ()in inA L T= and ()out outA L T= .

0E T E≥→ ⊆ × ∪ ×� is the transition relation between states. It corresponds to two

kinds of transitions witch includes discrete transitions (labelled with synchronized or
internal actions) and temporal or continuous transitions (labelled by real values).

The continuous (or delay) transitions are the result of time elapsing. We have

0(,) (,) iff dm I m I d ≥′→ ∈� and:

() () ()()1. t T t En m d I t∀ ∈ ∈ ⇒ ≤↑

() () () ()()2. t T t En m I t I t d′∀ ∈ ∈ ⇒ = −&

A continuous transition of size d is possible iff d is not greater than the latest firing
time of all enabled transitions. All firing intervals of enabled transitions are shifted
synchronously towards the origin as time elapses, and truncated to non negative
times.

Discrete transitions are the result of the transitions firing of the net. They may be
further partitioned into purely SUT or ENV transitions (hence invisible for the other
part) or synchronizing transitions between the SUT and the ENV (hence observable
for both parties). Internal transitions are fired individually while synchronizing
transitions are fired by complementary actions couples (e.g. a? and a! are
complementary synchronization actions). The first component of the couple is a
transition of the SUT model, labelled by an input (resp. output) action, and the second
component is an environment transition and labelled by an output (resp. input) action.

The discrete internal transitions: we have() () (), , iff andtm I m I L t τ′ ′→ = :

1. ()t En m∈

()2. 0 I t∈

() () () ()()3. 0k T k En m k t I kτ∀ ∈ ∈ ∧ ⇒ ∉f

()() () ()(() ())4. , , 0 0k T k TC k k k En m k t I k I kτ ′ ′ ′∀ ∈ ∀ ∈ ∈ ∧ ⇒ ∉ ∧ ∉f

() ()5. Pre Postm m t t′ = − +

() () () () () ()((),6. Pr if then else st mk T m e k I k NS k I k I k′ ′∀ ∈ ≥ ⇒ =

An internal transition t may fire from the state (),m I if it is enabled at m (1),

immediately fireable (2) and no transition with higher priority satisfies these
conditions (3 & 4). In the target state, the transitions that remained enabled while t
fired (t excluded) retain their intervals, the others are associated with their static
intervals (6).

The discrete synchronizing transition: we have:

() () () () (),
, , iff , , and

L t L t
m I m I t t T t TC tτ

′ ′ ′ ′ ′→ ∈ ∈ :

1. , ()t t En m′∈

() ()2. 0 0I t I t ′∈ ∧ ∈

() () () ()()3. 0k T k En m k t I kτ∀ ∈ ∈ ∧ ⇒ ∉f

()() () ()(() ())4. , , 0 0k T k TC k k k En m k t k t I k I k′ ′ ′ ′ ′∀ ∈ ∀ ∈ ∈ ∧ ∨ ⇒ ∉ ∧ ∉f f

() ()() () ()5. Pre Pre Post Postm m t t t t+′ ′ ′= − + +

() () () () () ()((), ,6. Pr if then else st t mk T m e k I k NS k I k I kτ ′′ ′∀ ∈ ≥ ⇒ =

The complementary transitions and t t′ may fire from the state ()Im, if they are

enabled (1), immediately fireable (2) and neither internal transition (3) nor couple of
complementary transitions with higher priority satisfies these conditions (4). In the
target state, the transitions that remained enabled while and t t′ fired (and t t′ excluded)
retain their intervals, the others are associated with their static intervals (6).

If the light controller and its environment (Figure 2 and 3) are in their initial state

and make a delay of 0.6 time unites (0.6
0 1e e→). The new state ()1 0 1,e m D= will be:

0 0 0 1 0

8

0

: , and : 0

 Tidle - 0.6

 0

m p q D t

t

s

≤
≤

≤

The firing of the synchronizing transition()0 0,t s from the state 1e leads to the state

2e (?, !
1 2

touch touche e→). The new state ()2 1 2,e m D= will be:

1 1 1 2 1

1

2

3

4

: , and : 0 0

 Treact

 0

 0

 0

m p q D t

s

s

s

s

≤ ≤
≤ ≤ ∞

≤ ≤ ∞
≤ ≤ ∞
≤ ≤ ∞

A firing schedule, or a time transitions sequence, is a sequence alternating delay
and discrete transitions1 1 2 2 n nd d dα α α⋅ ⋅ ⋅ . ia is a pure transition ()i k Tta = Î or a

synchronizing transition () ()(),i t t t T t TC tta ¢ ¢= Î Ù Î and id are the relative firing

times. A schedule is realisable from the state e if the discrete transitions of the
sequence 1 2 nσ α α α= ⋅ ⋅ ⋅ are successively fireable from e at the associated relative

firing times 1 2, , , nd d d⋅ ⋅ ⋅ . The sequence σ is called its support.

If the pausing time Tidle and the switching time Tsw are respectively equal to 20
and 4 time units then the following time sequence is a realisable schedule

() () () () () ()20. ?, ! .0. !, ? .5. ?, ! .0. dim!,dim? .4. ?, ! .0. !, ?touch touch bright bright touch touch touch touch off off

3.2 Tina (TIme Petri Net Analyzer)

Tina is a software environment for editing and analyzing TPN [6]. It includes the
following tools:
– nd (NetDraw) : an editor for graphical or textual description of TPN.

– tina : For analysing LPrTPN models, it is necessary to finitely represent the state
spaces by grouping some sets of states. tina builds the strong state classes graph
(SSCG in short), proposed in [8], which preserves states and maximal traces of the
state graph, and thus the truth value of all the formulae of the SE-LTL logic.
– plan is a path analysis tool. It computes all, or a single, timed firing sequence
(schedule) over some given firing transitions sequence. In particular, it computes the
fastest schedules and shortest paths. Accordingly, the latter schedules are used for test
case generation.
– selt: is a model checker for an enriched version of state-event LTL [19], a linear
temporal logic supporting both state and transition properties. For the properties
found false, selt produces a timed counter example. It’s called a diagnostic schedule
of the property. The realization of this schedule from the initial state satisfies the
property.

A diagnostic sequence of a property φ is a sequence of discrete transitions
(internal and/or complementary transitions). The successive firing of these transitions,
from m0, at the corresponding dates, allows satisfying the propertyφ . A diagnostic
trace is a schedule whose support is a diagnostic sequence.

3.3 Deterministic, Input Enabled and Output Urgent LPrTPN

To ensure time optimal testability, the following semantic restrictions turn out to be
sufficient. Following similar restrictions as in [31] and [45], we define the notion of
deterministic, input enabled and output urgent LPrTPN, DIEOU-LPrTPN, by
restricting the underlying timed transition system defined by the LPrTPN as follows:
(1) Deterministic: For every semantic state (),e m D= and an action { }0Aγ ≥∈ ∪ � ,

whenever e e
γ

′→ and e e
γ

′′→ thene e′ ′′= . (2) (Weak) input enabled: whenever
d

e→ for

some delay 0d ≥∈� then ,
a

ina A e∀ ∈ → . (3) Isolated outputs: { }outAα τ∀ ∈ U ,

{ }out inA Aβ τ∀ ∈ U U whenever e
α
→ and e

β
→ thenα β= . (4) Output urgency:

whenevere
α
→ , { }Oα τ∀ ∈ U then 0,

d
e d ≥→ ∈/ � .

We assume that the tester can take the place of the environment and control the
SUT via a distinguished set of observable input and output actions. For the SUT to be
testable the LPrTPN modelling it should be controllable in the sense that it should be
possible for an environment to drive the model through all of its syntactical parts
(transitions and places). We therefore assume that the SUT specification is a DIEOU-
LPrTPN, and that the SUT can be modelled by some unknown DIEOU-LPrTPN. The
environment model need not be a DIEOU-LPrTPN. These assumptions are commonly
referred to as the testing hypothesis.

Figure 2 shows an LPrTPN modelling the behaviour of a simple light-controller
(this example is taken from [31]). The user interacts with the controller by touching a
touch sensitive pad. The light has three intensity levels: OFF, DIMMED, and BRIGHT.
Depending on the timing between successive touches, the controller toggles the light
levels. For example, in dimmed state, if a second touch is made quickly (before the

switching time 4swT = time units) after the touch that caused the controller to enter

dimmed state (from either off or bright state), the controller increases the level to
bright. Conversely, if the second touch happens after the switching time, the
controller switches the light off. If the light controller has stayed in OFF state for a
long time (longer than or equal to 20idleT =), it should reactivate upon a touch by

going directly to BRIGHT level. We leave to the reader to verify for himself/herself
that the conditions of DIEOU-LPrTPN are met by the given model.

Figure 2. MSUT: the light controller model

Figure 3 shows two possible environment models for the simple light controller.
Figure 3(a) models a user capable of performing any sequence of touch actions. When
the constant Treact is set to zero he is arbitrarily fast. A more realistic user is only
capable of producing touches with a limited rate; this can be modelled setting Treact to
a non-zero value. Figure 3(b) models a different user able to make two quick
successive touches, but which then is required to pause for some time (to avoid
cramp), e.g., Tpause = 5. The LPrTPN shown in Figure 2 and Figure 3 respectively can

be composed in parallel on actions Ain = {touch} and Aout = {off, dim, bright}.

 (a) ME1 (b) ME2

Figure 3. Two light switch controller environment models

The firing of ()1 2,t s from the state ()2 1 2,e m D= leads to the state

()3 2 3,e m D= (dim?,dim!
2 3e e→):

2 4 1 2 2

4

1

2

3

: , and : Tsw

 0

 Treact

 0

 0

m p q D t

t

s

s

s

≤ ≤ ∞
≤ ≤ ∞

≤ ≤ ∞
≤ ≤ ∞
≤ ≤ ∞

4 0 s≤ ≤ ∞

4 Test Generation

4.1 From Diagnostic Traces to Test Cases

Let M be the LPrTPN model of the SUT together with its intended environment ENV;
and φ the property, formulated in SE−LTL, to be verified over M. As SE−LTL
evaluate the properties on all possible executions, we consider the formula φ¬ then
we submit it to selt. If the response is negative, i.e. all the executions do not
satisfy φ¬ , so at least one satisfy its negationφ . selt provide simultaneously a counter
example for φ¬ , i.e. a diagnostic sequence that demonstrates that property φ is
satisfied. This sequence is submitted to the tool plan for computing a schedule, or all
the schedules having this sequence as support. This schedule is an alternating
sequence of discrete transitions, synchronization (or internal) actions, performed by
the system and its environment, and temporal constraints (or transitions firings time-
delays) needed to reach the goal (the desirable marking or event).

Once the diagnostic trace is obtained, it’s convenient to construct the associated
test sequences. For DIEOU-LPrTPN, a test sequence is an alternating of sequence of
concrete delay actions and observable actions (without internal actions). From the
diagnostic trace above a test sequence,λ , may be obtained simply by projecting the
trace to the environment component, ME, while removing invisible transitions, and
summing adjacent delay actions. Finally, a test case to be executed on the real SUT
implementation may be obtained from λ by the addition of verdicts. Adding the
verdicts depends on the chosen conformity relation between the specification and
SUT. In this paper, we require timed trace inclusion, i.e. that the timed traces of the
SUT are included in the specification. Thus after any input sequence, the SUT is
allowed to produce an output only if the specification also able to produce that output.
Similarly, the SUT may delay (staying silent) only if the specification also may delay.
The test sequences produced by the technique proposed in this paper are derived from
the diagnostic traces, and are thus guaranteed to be included in the specification.

To clarify the construction we may model the test case itself as an LPrTPN Mλ for
the test sequenceλ . Places in Mλ are labelled using two distinguished labels, Pass
and Fail. The execution of a test case is formalized as a parallel composition of the
test case Petri net Mλ and SUT MSUT.

 SUT passes Mλ iff Mλ� MSUT → fail

Figure 4. Test case LPrTPN Mλ for the sequence λ= i 0! . delai . o0 ?

Mλ is constructed such that a complete execution terminates in a Fail state (the
place FAIL will be marked) if the SUT cannot perform λ and such that it terminates
in a Pass state (the place PASS will be marked) if the SUT can execute all actions of
λ . The construction is illustrated in figure 4.

4.2 Single Purpose Test Generation

A common approach to the generation of test cases is to first manually formulate a set
of informal test purposes and then to formalize these such that the model can be used
to generate one or more test cases for each test purpose. Because we use the
diagnostic trace facility of the model-checker selt, the test purpose must be formulated
as a SE-LTL property that can be checked by reachability analysis of the combined
model M. The test purpose can be directly transformed into a simple state or event
reachability check. Also, the environment model can be replaced by a more restricted
one that matches the behaviour of the test purpose only.

Figure 5. ME3, test environment for TP2

TP1: check that the light can become bright.
TP2: check that the light switches off after three successive touches.

TP1 can be formulated as a simple SE-LTL property 1 BRIGHTφ = ◊ (state property)

or 2 !BRIGHTφ = ◊ (event property) i.e. eventually in some future the place bright of

the light controller Petri net will be marked or the event bright! will be executed.
Among all diagnostic sequences exhibited by selt that satisfy the property

1φ (or 2φ), two sequences are more interesting: the shortest and the fastest sequences.

The second is selected as follows: first, we compute the fastest schedule associated
for each obtained sequence, and then we keep only the schedule with the smallest
accumulated time. Finally, the two schedules associated to the two selected sequences

will be transformed to test cases as explained in 4.1. The execution time for each of
these test cases is optimal.

 For the light controller, the shortest diagnostic trace is
() ()?, ! !, ?touch touch bright bright . It results in the test sequence 20. !.0. ?touch bright .

However, the fastest sequence satisfying 1φ is () () .0. touch?,touch! .0. dim!,dim? .0

()?, !touch touch . It results in the test sequence 0. !.0.dim?.0. !.0. ?touch touch bright

TP2 can be formalized using the property ME3� 3 OBJECTIFφ = ◊ with ME3 is the

restricted environment model in Figure 5. The fastest test sequence is:
 0. !.0.dim?.0. !.0. ?.0. !.0. ?touch touch bright touch off

4.3 Coverage Based Test Generation

A large suite of coverage criteria may be proposed, such as statement, transition,
states, and classes, each with its merits and application domain. We explain how to
apply some of these to TPN models. In this paper, we use three coverage criteria of
the LPrTPN model of the SUT:

Transition Coverage. A test sequence satisfies the transition-coverage criterion if,
when executed on the model, it fires every transition of the net. Transition coverage

can be formulated by the property
1

n

t i
i

tφ
=

= ∧ ◊ , where n is the number of transitions of

the net. The obtained counter example of the non satisfaction of the property tφ¬

ensures transition coverage. Once the diagnostic sequences are obtained, we compute
the two schedules: (1) the fastest schedule which has as support the shortest sequence
(2) the fastest schedule among all schedules exhibited by selt. We transform these
schedules in test cases as is indicated in 4.1.

When the environment can touch arbitrarily, the generated fastest transition
covering test has the accumulated execution time 28. The solution (there might be
more traces with the same fastest execution time) generated by plan is:

: 0.touch!.0.dim?.0.touch!.0.bright?.0.touch!.0.off?.20.touch!.0.bright?.4.touch!.0.dim?.4.TC

touch!.0.off?

Place Coverage. A test sequence satisfies the place-coverage criterion if, when
executed on the model, it marks every place of the net. Place coverage can be

formulated by the property
1

1
m

P i
i

pφ
=

= ∧ ◊ ≥ , where m is the number of places of the net.

Marking Coverage. A test sequence satisfies the marking-coverage criterion if, when
executed on the model, it generates all the markings of the net. The test sequences
which ensure the marking-coverage are generated by selecting the transition
sequence(s), from the SSCG of the model, which generates all the markings of the
SUT model. Test cases generation from the diagnostic traces that ensures place
coverage and marking coverage are computed as in coverage transition.

 4.4 Test Suite Generation

Frequently, for a given test purpose criterion, we cannot obtain a single covering test
sequence. This is due to the dead-ends in the model. To solve this problem, we allow
for the model (and SUT) to be reset to its initial state and to continue the test after the
reset to cover the remaining parts. The generated test will then be interpreted as a test
suite consisting of a set of test sequences separated by resets (assumed to be
implemented correctly in the SUT).

To introduce resets in the model, we shall allow the user to designate some
markings as being reset-able i.e. markings that allows to reach the initial marking0m .
Evidently, performing a reset may take some time rT that must be taken into account
when generating time optimal test sequences. Reset-able markings can be encoded into
the model by adding reset transitions leading back to the initial marking. Let rm the
reset-able marking, two reset transitions and a new place q which must be added as:

The transition reset! must be added such as their input places are the encoded
places (those of rm) and its output place is the place q. The firing of reset! marks the

place q. () () ()
!

0 0, ,[,] ,
reset

r r rm q T T m I
τ

− → →

4.5 Environment Behaviour

Test sequences generated by the techniques presented above may be non-realizable;
they may require the SUT environment to operate infinitely fast. Generally, it is only
necessary to establish correctness of SUT under the environment assumptions.
Therefore assumptions about the environment can be modelled explicitly and will
then be taken into consideration during test sequence generation. We demonstrate
how different environment assumptions influence the generated test sequences.

Consider an environment where the user takes at least 2 time units between each
touch action, such an environment can be obtained by setting the constant reactT to 2
in Figure 3(a). The fastest test sequences become 0.touch!.0.dim?.2.touch!.0.bright?TP1:
and 0.touch!.0.dim?.2.touch!.0.bright?.2.touch!.0.off?TP2 :

Also re-examine the test suite TC generated by transition coverage, and compare
with the one of execution time 32 generated whenreactT equals 2.

 0.touch!.0.dim?.4.touch!.0.off?.20.touch!.0.bright?.4.touch!.0.dim?.2.touch!.0.bright?.2.TC' :
 touch!.0.off?

When the environment is changed to the pausing user (can perform 2 successive
quick touches after which he is required to pause for some time: reaction time 2,
pausing time 5), the fastest sequence has execution time 33, and follows a completely
different strategy.

 .0.touch!.0.dim?.2.touch!.0.bright?.5.touch!.0.dim?.4.touch!.0.off?.20.touch!.0.bright?.2TC'' :
touch!.0.off?

6 Conclusion

In this paper, we have demonstrated that the problem of timed test generation is
transformed to a problem of model checking. We have shown that time-optimal test
suites, computed from either a single test purpose or coverage criteria can be
generated using the Tina toolbox. We have also introduced modifications in the
transitions firings algorithms taking into account the reactive character of embedded
real-time systems. Unlike the technique based on TA [31], the advantages of using
TINA are the following: 1) when computing the SSCG for bounded PrTPN, contrary
to the zone graph of TA, no abstraction is required in order to ensure termination; this
allows to avoid ad-hoc techniques for enforcing termination of forward analysis; 2) it
may help tackling the state explosion problem due to parallel composition of TA.

The DIEOU-PrTPN is quite restrictive, and generalization will benefit many real-
time systems.

References

1. Adjir, N., de Saqui-Sannes, P, Rahmouni, M., K., Génération des séquences de test
temporisés à partir des réseaux de Petri temporels à chronomètres, NOTERE’07, Maroc.

2. Alur, R., Dill, D., A theory of timed automata, Theoretical Computer Science, 126 (2):183–
235, 1994.

3. Berard, B., Cassez, F, Haddad, S., Roux, O. H., et Lime., D., Comparison of the
Expressiveness of Timed Automata and Time Petri Nets, In FORMATS’05, Springer LNCS
3829, pages 211–225, 2005.

4. Bérard, B., Cassez F., Haddad S., Lime D. and Roux O. H., When are timed automata
weakly timed bisimilar to time Petri nets?, FSTTCS’5, LNCS 3821, Hyderabad, India, 2005.

5. Berthomieu, B., M. Diaz, modelling and verification of time dependent systems using time
Petri nets, IEEE transactions on software Engineering, 17(3), 1991.

6. Berthomieu B., Ribet P. O., Vernadat F., The tool TINA -- Construction of Abstract State
Spaces for Petri Nets and Time Petri Nets, Inter. JPR, Vol. 42, No 14, July 2004.

7. Berthomieu B., Peres F., Vernadat F., Bridging the gap between Timed Automata and
Bounded Time Petri Nets, In Proc. of FORMATS 2006. Springer Verlag, LNCS 4202, 2006.

8. Berthomieu, B., F. Peres, and Vernadat F., Model Checking Bounded Prioritized Time Petri
Nets. In ATVA 2007, Springer LNCS 4762, pages 523–532, 2007

9. Berthomieu, B., P.-O. Ribet, and Vernadat F., The tool TINA –construction of abstract state
spaces for Petri nets and time Petri nets. IJPR, 42(14) :2741– 2756, 15 July 2004.

10. Berthomieu, B., et Vernadat F., State Space Abstractions for Time Petri Nets, Handbook of
Real-Time and Embedded Systems, CRC Press, Boca Raton, FL., U.S.A., 2007.

11. Bouyer P., Dufourd C., Fleury E., and Petit A., Updatable timed automata, TCS, 321(2–
3):291–345, 2004.

12. Bouyer P., Forward Analysis of Updatable Timed Automata, FMSD 24(3), 281-320,
2004.

13. Bouyer P., Chevalier F., On conciseness of extensions of timed automata, JALC, 2005.
14. Bouyer P., Serge H., Reynie P. A., Extended Timed Automata and Time Petri Nets, in

ACSD'06, Turku, Finland, 91-100, IEEE Computer Society Press, juin 2006.
15. Braberman V., Felder M., Marre M., Testing timing behaviour of real-time software, In

Intern.Software Quality Week, 1997.
16. Brinksma E., Tretmans J., Testing transition systems: An annotated bibliography, In

MOVEP 2000, 2067 of LNCS, Springer, 2001.
17. Cardell-Oliver R., Conformance test experiments for distributed real-time systems, In

ISSTA’02, ACM Press, 2002.
18. Cassez F., Roux O. H., Structural translation from time Petri nets to timed automata, JSS

2006.
19. Chaki S., Clarke E., M., Ouaknine J., Sharygina N., Sinha N., State/Event-based Software

Model Checking, 4th ICIFM, Springer LNCS 2999, 128-147, 2004.
20. Choffrut C. and Goldwurm M., Timed automata with periodic clock constraints, JALC,

5(4):371–404, 2000.
21. Cleaveland R., Hennessy M., Testing Equivalence as a Bisimulation Equivalence, Formal

Aspects of Computing, 5:1-20, 1993.
22. David A., Hakansson J., Larsen K. G., et Pettersson P., Model checking timed automata

with priorities using DBM subtraction, in FORMATS’06,LNCS 4202, 128–142, 2006.
23. Demichelis F. and Zielonka W., Controlled timed automata, In Proc. CONCUR’98, vol.

1466 of LNCS, p. 455–469, Springer, 1998.
24. de Vries R., Tretmans J., on-the-fly conformance testing using SPIN, STTT, 2(4): 382-393,

March 2000.
25. Diekert V., Gastin P., Petit A. Removing epsilon-Transitions in Timed Automata, In 14th

an. stacs 1197, p;583-594, LNCS, Vol. 1200, Springer, Lubeck, Germany, February 1997.
26. En-Nouaary A., Dssouli R., Khendek F., Elqortobi A., Timed test cases generation based

on state characterization technique , In RTSS’98, IEEE, 1998.
27. Fersman E., Petterson P., and Yi W., Timed automata with asynchronous processes:

Schedulability and decidability In Proc. TACAS’02, vol.2280 of LNCS, P. 67–82, 2002.
28. Fernandez J.C., Jard C., Jéron T., Viho G., Using on-the-fly verification techniques for the

generation of test suites », In CAV’96, LNCS 1102, 1996.
29. Khansa W., réseaux de Petri P-temporels : contribution à l’étude des systèmes à événements

discrets, thèse de doctorat, université de Savoie, Annecy, France 1997.
30. Henzinger T. A., The theory of hybrid automata, Proc.LICS’96, 278–29,. IEEE CSP, 1996.
31. Hessel A., Larsen K., Nielsen B., Pettersson P., Skou A., Time-optimal real-time test case

generation using UPPAAL , In FATES’03, Montreal, October 2003.
32. Higashino T., Nakata A., Taniguchi K., Cavalli A., Generating test cases for a timed I/O

automaton model, In IFIP Int’l Work, Test Comm. System Kluwer, 1999.
33. Jéron T., Morel P., Test generation derived from model-cheking, In Halbwachs and D.

peled Editors, CAV’99, Trento, Italy, 1633 of LNCS, 108-122. Springer-Verleg, july 1999.
34. Jéron T., Rusu V., Zinovieva E., « STG: A symbolic test generation tool, In TACAS’02,

2280 of LNCS, Springer, 2002.
35. Khoumsi A., Jéron T., Marchand H., Test cases generation for nondeterministic real-time

systems, In FATES’03, Montreal, October 2003.

36. Krichen M., Tripakis S., An Expressive and Implementable Formal Framework for Testing
Real-Time Systems, In 17th IFIP Intl. TestCom'05, 2005

37. Lime D., Roux O., H., State class timed automaton of a time Petri net, in PNPM’03, 124-
133, Urbana, USA, 2003, IEEE computer society.

38. Lin J. C., Ho I., « Generating Real-Time Software Test Cases by Time Petri Nets, IJCA (EI
journal), ACTA Press, U.S.A. Vol. 22, No.3,151-158, Sept. 2000.

39. Merlin P. M., Farber J., Recoverability of communication protocols: Implications of a
theoretical study, IEEE Trans. Com., 24(9):1036-1043, September 1976.

40. Mikucionis M., K. G. Larsen, Brian Nielsen, T-UPPAAL: Online Model-based Testing of
Real-time Systems, 19th IEEE Internat. Conf. ASE, 396-397. Linz, Austria, 2004.

41. Nielsen B., Skou. A., Automated test generation from timed automata, In TACAS’01, LNCS
2031, Springer, 2001.

42. Peleska J., Formal methods for test automation - hard real-time testing of controllers for the
airbus aircraft family, In IDPT’02, 2002.

43. Ramchadani C., Analysis of asynchronous concurrent systems by timed Petri nets,
Cambridge, Mass, MIT, dept Electrical Engineering, Phd thesis, 1992.

44. Shang-Wei L., Pao-Ann H., Chun-Hsian H., et Yean-Ru C., Model checking prioritized
timed automata, In ATVA’2005, Springer LNCS 3707, 370–384, 2005.

45. Springintveld J., Vaandrager F., D’Argenio P., Testing timed automata, TCS, 254, 2001.
46. Tretmans J., Testing concurrent systems: A formal approach, In J.C.M Beaten and S. Mauw

editors, CONCUR’99 CCT, vol. 1664 of LNCS, 46–65. Springer-Verlag, 1999.

	sAQUI
	To link to this article: DOI: http://dx.doi.org/10.1007/978-3-642-05031-2_1

	Binder1.pdf
	De_Saqui_Sannes_3231.pdf
	sAQUI
	To link to this article: DOI: http://dx.doi.org/10.1007/978-3-642-05031-2_1

	De_Saqui_Sannes_3231.pdf

