21 research outputs found

    A Novel Regulatory Mechanism of Map Kinases Activation and Nuclear Translocation Mediated by Pka and the Ptp-Sl Tyrosine Phosphatase

    Get PDF
    Protein tyrosine phosphatase PTP-SL retains mitogen-activated protein (MAP) kinases in the cytoplasm in an inactive form by association through a kinase interaction motif (KIM) and tyrosine dephosphorylation. The related tyrosine phosphatases PTP-SL and STEP were phosphorylated by the cAMP-dependent protein kinase A (PKA). The PKA phosphorylation site on PTP-SL was identified as the Ser231 residue, located within the KIM. Upon phosphorylation of Ser231, PTP-SL binding and tyrosine dephosphorylation of the MAP kinases extracellular signal–regulated kinase (ERK)1/2 and p38α were impaired. Furthermore, treatment of COS-7 cells with PKA activators, or overexpression of the Cα catalytic subunit of PKA, inhibited the cytoplasmic retention of ERK2 and p38α by wild-type PTP-SL, but not by a PTP-SL S231A mutant. These findings support the existence of a novel mechanism by which PKA may regulate the activation and translocation to the nucleus of MAP kinases

    Inhibitors of phosphoprotein phosphatases 1 and 2A cause activation of a 53 kDa protein kinase accompanying the apoptotic response of breast cancer cells

    Get PDF
    Treatment of MCF-7 breast cancer cells with 50 nM okadaic acid triggers an apoptotic response which is accompanied by a 7-fold increase in the activity of a protein kinase with a relative molecular mass of 53 kDa. The activity of the kinase was stimulated by cell treatment with inhibitors of phosphoprotein phosphatase I and 2A, but not by stressing conditions. Okadaic acid-induced stimulation of the 53 kDa protein kinase was not abolished by coincubation of cells with cycloheximide. We conclude that stimulation of the 53 kDa protein kinase by inhibitors of phosphoprotein phosphatases involves pre-existing molecular components whose activity depends on the phosphorylation state of serine/threonine residues. (C) 1997 Federation of European Biochemical Societies
    corecore