32 research outputs found

    Assembly of β-barrel proteins into bacterial outer membranes

    Get PDF
    Membrane proteins with a β-barrel topology are found in the outer membranes of Gram-negative bacteria and in the plastids and mitochondria of eukaryotic cells. The assembly of these membrane proteins depends on a protein folding reaction (to create the

    Super-Resolution Imaging of Protein Secretion Systems and the Cell Surface of Gram-Negative Bacteria

    No full text
    Gram-negative bacteria have a highly evolved cell wall with two membranes composed of complex arrays of integral and peripheral proteins, as well as phospholipids and glycolipids. In order to sense changes in, respond to, and exploit their environmental niches, bacteria rely on structures assembled into or onto the outer membrane. Protein secretion across the cell wall is a key process in virulence and other fundamental aspects of bacterial cell biology. The final stage of protein secretion in Gram-negative bacteria, translocation across the outer membrane, is energetically challenging so sophisticated nanomachines have evolved to meet this challenge. Advances in fluorescence microscopy now allow for the direct visualization of the protein secretion process, detailing the dynamics of (i) outer membrane biogenesis and the assembly of protein secretion systems into the outer membrane, (ii) the spatial distribution of these and other membrane proteins on the bacterial cell surface, and (iii) translocation of effector proteins, toxins and enzymes by these protein secretion systems. Here we review the frontier research imaging the process of secretion, particularly new studies that are applying various modes of super-resolution microscopy

    Digital Studies : = Le champ numérique

    Get PDF
    The Gram-negative bacterial pathogen Klebsiella pneumoniae forms biofilms to facilitate colonization of biotic and abiotic surfaces. The formation of biofilms by K. pneumoniae requires the expression of type 3 fimbriae: elongate proteinaceous filaments extruded by a chaperone-usher system in the bacterial outer membrane. The expression of the mrkABCDF cluster that encodes this fimbrial system is strongly positively regulated by MrkH, a transcriptional activator that responds to the second messenger, c-di-GMP. In this study, we analyzed the mechanism by which the MrkH protein activates transcriptional initiation from the mrkA promoter. A mutational analysis supported by electrophoretic mobility shift assays demonstrated that a 12-bp palindromic sequence (the MrkH box) centered at -78.5 is the binding site of MrkH. Deletion of half a turn, but not a full turn, of DNA located between the MrkH box and the mrkA promoter destroyed the ability of MrkH to activate mrkA transcription. In addition, a 10-bp AT-rich sequence (the UP element) centered at -63.5 contributed significantly to MrkH-dependent mrkA transcription. In vivo analysis of rpoA mutants showed that the R265 and E273 determinants in the C-terminal domain of RNA polymerase α subunit are needed for MrkH-mediated activation of mrkA transcription. Furthermore, results from mutagenesis of the mrkH gene suggest that the N-terminal region of the protein is involved in transcriptional activation. Taken together, our results suggest that MrkH activates mrkA expression by interacting directly with RNA polymerase, to overcome the inefficient transcriptional initiation caused by the presence of defective core promoter elements

    The evolution of new lipoprotein subunits of the bacterial outer membrane BAM complex

    No full text
    The β-barrel assembly machine (BAM) complex is an essential feature of all bacteria with an outer membrane. The core subunit of the BAM complex is BamA and, in Escherichia coli, four lipoprotein subunits: BamB, BamC, BamD and BamE, also function in the BAM complex. Hidden Markov model analysis was used to comprehensively assess the distribution of subunits of the BAM lipoproteins across all subclasses of proteobacteria. A patchwork distribution was detected which is readily reconciled with the evolution of the α-, β-, γ-, δ- and ε-proteobacteria. Our findings lead to a proposal that the ancestral BAM complex was composed of two subunits: BamA and BamD, and that BamB, BamC and BamE evolved later in a distinct sequence of events. Furthermore, in some lineages novel lipoproteins have evolved instead of the lipoproteins found in E. coli. As an example of this concept, we show that no known species of α-proteobacteria has a homologue of BamC. However, purification of the BAM complex from the model α-proteobacterium Caulobacter crescentus identified a novel subunit we refer to as BamF, which has a conserved sequence motif related to sequences found in BamC. BamF and BamD can be eluted from the BAM complex under similar conditions, mirroring the BamC:D module seen in the BAM complex of γ-proteobacteria such as E. coli

    Reductive evolution in outer membrane protein biogenesis has not compromised cell surface complexity in Helicobacter pylori

    Get PDF
    Helicobacter pylori is a gram-negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host-pathogen interactions mediated by Helicobacter-specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C-terminal β-barrel domain, which requires their assembly by the β-barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C-terminal β-barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter-specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β-barrel architecture that might constitute H. pylori-specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β-barrel-complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori

    The effects of various mutations on MrkH-dependent and -independent transcription of the <i>mrkA</i> promoter.

    No full text
    a<p>β-galactosidase assays were carried out using <i>E. coli</i> MC4100 derivatives after growth in LB. β-galactosidase activity is the average of three independent experiments, with standard deviation below 15%.</p>b<p>The pMU2385 derivative contains the WT <i>mrkA</i> regulatory region spanning the positions −190 and +166. All the other mutations described in this Table are based on this plasmid.</p>c<p>Shown in parentheses are the values of fold activation, equal to the specific activity of β-galactosidase of the MrkH<sup>+</sup> strain divided by that of the MrkH<sup>−</sup> strain.</p
    corecore