9,318 research outputs found

    High voltage planar multijunction solar cell

    Get PDF
    A high voltage multijunction solar cell is provided wherein a plurality of discrete voltage generating regions or unit cells are formed in a single generally planar semiconductor body. The unit cells are comprised of doped regions of opposite conductivity type separated by a gap or undiffused region. Metal contacts connect adjacent cells together in series so that the output voltages of the individual cells are additive. In some embodiments, doped field regions separated by a overlie the unit cells but the cells may be formed in both faces of the wafer

    Method of making a high voltage V-groove solar cell

    Get PDF
    A method is provided for making a high voltage multijunction solar cell. The cell comprises a plurality of discrete voltage generating regions, or unit cells, which are formed in a single semiconductor wafer and are connected together so that the voltages of the individual cells are additive. The unit cells comprise doped regions of opposite conductivity types separated by a gap. The method includes forming V-shaped grooves in the wafer and thereafter orienting the wafer so that ions of one conductivity type can be implanted in one face of the groove while the other face is shielded. A metallization layer is applied and selectively etched away to provide connections between the unit cells

    High voltage v-groove solar cell

    Get PDF
    A high voltage multijunction solar cell comprises a number of discrete voltage generating regions, or unit cells, which are formed in a single semiconductor wafer and are connected together so that the voltages of the individual cells are additive. The unit cells comprise doped regions of opposite conductivity types separated by a gap. The method includes forming V-shaped grooves in the wafer and orienting the wafer so that ions of one conductivity type can be implanted in one face of the groove while the other face is shielded. A metallization layer is applied and selectively etched away to provide connections between the unit cells

    Planar multijunction high voltage solar cells

    Get PDF
    Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multi-junction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators

    A transport model of the turbulent scalar-velocity

    Get PDF
    Performance tests of the third-order turbulence closure for predictions of separating and recirculating flows in backward-facing steps were studied. Computations of the momentum and temperature fields in the flow domain being considered entail the solution of time-averaged transport equations containing the second-order turbulent fluctuating products. The triple products, which are responsible for the diffusive transport of the second-order products, attain greater significance in separating and reattaching flows. The computations are compared with several algebraic models and with the experimental data. The prediction was improved considerably, particularly in the separated shear layer. Computations are further made for the temperature-velocity double products and triple products. Finally, several advantages were observed in the usage of the transport equations for the evaluation of the turbulence triple products; one of the most important features is that the transport model can always take the effects of convection and diffusion into account in strong convective shear flows such as reattaching separated layers while conventional algebraic models cannot account for these effects in the evaluation of turbulence variables

    High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures

    Get PDF
    This article presents two high-efficient parallel realizations of the context-based adaptive variable length coding (CAVLC) based on heterogeneous multicore processors. By optimizing the architecture of the CAVLC encoder, three kinds of dependences are eliminated or weaken, including the context-based data dependence, the memory accessing dependence and the control dependence. The CAVLC pipeline is divided into three stages: two scans, coding, and lag packing, and be implemented on two typical heterogeneous multicore architectures. One is a block-based SIMD parallel CAVLC encoder on multicore stream processor STORM. The other is a component-oriented SIMT parallel encoder on massively parallel architecture GPU. Both of them exploited rich data-level parallelism. Experiments results show that compared with the CPU version, more than 70 times of speedup can be obtained for STORM and over 50 times for GPU. The implementation of encoder on STORM can make a real-time processing for 1080p @30fps and GPU-based version can satisfy the requirements for 720p real-time encoding. The throughput of the presented CAVLC encoders is more than 10 times higher than that of published software encoders on DSP and multicore platforms

    Modeling gap seeking behaviors for agent-based crowd simulation

    Get PDF
    Research on agent-based crowd simulation has gained tremendous momentum in recent years due to the increase of computing power. One key issue in this research area is to develop various behavioral models to capture the microscopic behaviors of individuals (i.e., agents) in a crowd. In this paper, we propose a novel behavior model for modeling the gap seeking behavior which can be frequently observed in real world scenarios where an individual in a crowd proactively seek for gaps in the crowd flow so as to minimize potential collision with other people. We propose a two-level modeling framework and introduce a gap seeking behavior model as a proactive conflict minimization maneuver at global navigation level. The model is integrated with the reactive collision avoidance model at local steering level. We evaluate our model by simulating a real world scenario. The results show that our model can generate more realistic crowd behaviors compared to the classical social-force model in the given scenario

    ProactiveCrowd: modeling proactive steering behaviours for agent-based crowd simulation

    Get PDF
    How to realistically model an agent's steering behavior is a critical issue in agent-based crowd simulation. In this work, we investigate some proactive steering strategies for agents to minimize potential collisions. To this end, a behavior-based modeling framework is first introduced to model the process of how humans select and execute a proactive steering strategies in crowded situations and execute the corresponding behavior accordingly. We then propose behavior models for two inter-related proactive steering behaviors, namely gap seeking and following. These behaviors can be frequently observed in real-life scenarios, and they can easily affect overall crowd dynamics. We validate our work by evaluating the simulation results of our model with the real-world data and comparing the performance of our model with that of another state-of-the-art crowd model. The results show that the performance of our model is better or at least comparable to the compared model in terms of the realism at both individual and crowd level
    corecore