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Abstract
How to realistically model an agent’s steering behavior is a critical issue in agent-based crowd simulation. In this work, we
investigate some proactive steering strategies for agents to minimize potential collisions. To this end, a behavior-based modeling
framework is first introduced to model the process of how humans select and execute a proactive steering strategies in crowded
situations and execute the corresponding behavior accordingly. We then propose behavior models for two inter-related proactive
steering behaviors, namely gap seeking and following. These behaviors can be frequently observed in real-life scenarios, and
they can easily affect overall crowd dynamics. We validate our work by evaluating the simulation results of our model with the
real-world data and comparing the performance of our model with that of another state-of-the-art crowd model. The results
show that the performance of our model is better or at least comparable to the compared model in terms of the realism at both
individual and crowd level.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: 3D Graphics and Realism—Animation,
I.6.5 [Simulation and Modeling]: Model Development—Modeling methodologies

1. Introduction

Human crowd is an intriguing social phenomena in nature. Crowd
modeling and simulation [ZCC∗10] has become an important tool
to analyze the impact of crowd behavior in a wide range of applica-
tions including safety planning, architecture design, virtual reality,
military training, etc [ST05, Tha07, PSAB08, TFB∗11, ZCLL14].
Among different approaches to crowd simulation, agent-based
crowd modeling has emerged as the most popular and powerful
one, due to its capability to model heterogeneous individual behav-
iors. In agent-based crowd simulation, the overall crowd dynamics
is determined by the behaviors of individual agents and their inter-
actions.

To model an agent’s behavior in a crowd, an important issue is
how to model the agent’s steering ability to avoid possible colli-
sions with nearby agents and other dynamic obstacles. Most ex-
isting work tackles this problem with a reactive approach, that is,
an agent examines oncoming collisions and responsively derives a
suitable velocity that can avoid these collisions. The derivation of
such suitable velocity could be based on different methods, such as
synthetic vision [OPOD10] and velocity obstacles [VDBGLM11].
Although these models are effective in producing smooth locomo-
tion of agents, they mainly deal with the reactive response to imme-
diate collisions. In fact, human’s efforts to minimize potential col-
lisions also include some navigation strategies at a higher level. For

instance, a person may perform a detour from original planned path
and proactively seek to an empty space in a crowd (see Figure 1) as
she/he perceives such redirection may result in less efforts to avoid
future collisions. We refer to such kind of behaviors as proactive
steering behaviors. It is essential to incorporate such behaviors to
improve the realism of crowd simulation.

Research on proactive steering behavior modeling has emerged
as a promising direction in crowd simulation. To realize proactive
steering behavior, existing work [PPD07, GNCL14, BP15] usually
adopts a prediction-based approach, which infers proactive steer-
ing motions based on the prediction of future states of agents.
Such approach has to estimate future interactions among agents
which could be complex when the number of agents increases. It
may also require some cost functions (e.g., energy consumption
function in [BP15]) to determine the optimal velocity of agents.
However, in real-life situations, a person may not adopt such op-
timization techniques (e.g., energy minimization) given the time
constraint and complexity of surrounding crowd. We believe that
people adopt some simple behaviors such as gap seeking and fol-
lowing to achieve proactive steering. Such behaviors are direct and
intuitive strategies that can be often observed from real-life sce-
narios. Thus, we advocate a behavior-based approach to modeling
proactive steering.

In this paper, we present ProactiveCrowd, a behavior-based ap-
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(a) Gap seeking in bidirectional flow

(c) Gap seeking in perpendicular flow

(b) Following in bidirectional flow

(d) Following in perpendicular flow

Figure 1: Gap seeking and following behaviors observed in two real world scenarios. Snapshots for bidirectional flow and perpendicular
flow are captured from the crowd experiment videos for the Hermes project [Her] and SMDPC project [SMD] respectively.

proach for modeling proactive steering behaviors of crowd. We first
introduce an overall modeling framework for proactive steering in
agent-based crowd simulation. The framework is extensible to in-
corporate different proactive steering behaviors for complex crowd
scenarios. Based on our observations in real-life scenarios, we then
propose the behavior models of two types of proactive steering be-
haviors. The first type of behavior occurs when a gap (i.e., empty
space in a crowd flow) is formed due to asynchronized movement
of individuals. When a person (see orange circled individual in Fig-
ure 1) observes a gap close to her/his walking path, she/he may
make a detour to the gap in order to minimize the effort to avoid
potential conflicts. We refer this type of behavior as gap seeking.
Related to gap seeking behavior, people (green circled individuals
in Figure 1) in the same flow closer to the gap seeker may perform
the second type of behavior (i.e., the following behavior), as they
perceive the path following the gap seeker can help to reduce their
efforts for collision avoidance.

The key contributions of this paper are summarized as follows:

• We demonstrate the applicability of mapping intuitive proactive
steering strategies of individuals observed from real world sce-
narios into various behavior models and using a unified frame-
work to drive the behavior selection and execution of these be-
haviors.
• With the focus on intersecting crowd scenarios, we identify two

inter-related proactive steering behaviors, namely gap seeking
and following behavior and propose the detailed behavior mod-
els for them. The gap seeking behavior model extends our pre-
vious work [LCZM16] by considering the detected gap as a dy-
namic moving object when the moving direction for gap seek-
ing is computed. Related to gap seeking, the following behav-
ior model not only controls how an agent performs following
motion, but also dynmically determines suitable followee (i.e.,
the individual being followed) from the observed gap seeker and
other followers.

• We show the validity of our proposed models by conducting an
extensive evaluation with the simulations of two real-world sce-
narios. The performance of our model is compared with another
state-of-the-art crowd model. The simulation results from both
models are evaluated against the real world data. The evalua-
tion is performed at both individual level and crowd level using
visual inspection, trajectory similarity comparison, fundamental
diagrams and progressive distance error. The results show that
our model is better or at least comparable to the compared model
based on different evaluation metrics.

The remainder of this paper is organized as follows. Section 2
provides an overview of related work. Section 3 describes our mod-
eling framework and the detailed behavior models for the two key
proactive steering behaviors, namely gap seeking and following. In
Section 4, we present our case study. Section 5 discusses the con-
clusion and future work.

2. Related Work

Agent-based crowd modeling and simulation has become an ac-
tive field in recent years, thanks to its ability to model heteroge-
nous individuals. To model the steering behaviors of a crowd, most
agent-based crowd behavior models are built upon two inter-related
components: global navigation and local steering. The global nav-
igation component is usually responsible for generating an agent’s
path as a series of waypoints within an environment configuration.
The local steering component deals with agent’s movement from
one waypoint to another while avoiding incoming collisions with
nearby agents. Different algorithms and models have been pro-
posed to realize these two behavioral components for crowd simu-
lation.

Global navigation is commonly realized using some searching
algorithms (e.g., A* algorithm [DP85]) . To support navigation in a
complex environment, Shao and Terzopoulos [ST05] proposed a hi-
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Figure 2: The overall modeling framework of ProactiveCrowd.

erarchal environment model to achieve long-range and short-range
path planning with A*. Ozcan and Haciomeroglu [OH15] pro-
posed a modified A* algorithm that considers the flow directions
of other agents. Other methods include navigation mesh [Sno00]
and roadmaps [SGA∗07]. Patil et al. [PVdBC∗11] adopted a data-
driven approach which generates guidance fields from video data
to direct an agent’s movement.

Extensive work has also been done for modeling the local steer-
ing behavior of an individual, which mainly deals with the reac-
tive response to oncoming collisions. The social-force model pro-
posed by Helbing et al. [HFV00] used the physical and socio-
psychological forces to model the interactions between agents.
Pelechano et al. [PAB07] combined a rule-based system with the
force-based model. Karamouzas et al. [KHvBO09] presented a lo-
cal avoidance method based on collision prediction. Kapadia et
al. [KSHF09] proposed an egocentric pedestrian steering frame-
work, which introduces affordance fields in an egocentric man-
ner for local planning and steering. Reciprocal Velocity Obstacles
(RVO) model [VDBGLM11] was introduced to generate collision-
free locomotion of agent based on velocity space sampling.

More recently, researchers have begun to introduce an addi-
tional layer between the global navigation and local steering com-
ponents. Generally, the purpose of this layer is to enable agents
to avoid potential collisions in a more proactive manner. Paris et
al. [PPD07] presented a predictive approach which first deduces
sets of valid speed and orientation based on the predication of fu-
ture agent interactions and then selects the best solution using a
cost function, considering environment state and an agent’s goal.
Hu et al. [HZW∗10] proposed a framework which generates agent’s
steering actions based on observed spatial-temporal patterns. Golas
et al. [GNCL14] proposed a long-range collision avoidance model
which extends the local RVO model by exploring future states of
agents with lookahead times. The long-range interactions are esti-
mated and used to add velocity constraints for collision avoidance.
Bruneau and Pettré [BP15] introduced a mid-term planning model
which also explores future agent interactions within the next n time
steps and devises optimal avoidance strategy based on an energy
cost function. Best et al. [BNCM14, NBCM15] proposed a Dens-
eSense model which uses a density-dependent filter to correct the
preferred velocity from global planner. The filter can be augmented

with different local avoidance models (i.e., social force model and
RVO) to generate density-dependent crowd behaviors which result
in better utilization of free space by the agents.

Different from the existing work for proactive steering behav-
ior modeling, we adopt a behavior-based approach which aims to
identify a set of proactive steering strategies that a real person per-
forms in real-life situations. We formalize these strategies as a set of
behaviors, such as gap seeking and following, and utilize these be-
haviors to drive the agents for proactive steering. Compared to the
existing work which is mostly based on the prediction of complex
future agent interactions, our behavior-based approach provides a
more direct and human-like maneuver to capture how individuals
proactively minimize potential conflicts in typical crowd scenarios.

In terms of behaviors being modeled, our gap seeking behavior
model considers how to better utilize free spaces around an agent’s
surrounding area, which shares some similarities with the Dens-
eSense model [BNCM14, NBCM15]. However, we use the notion
of gap to represent free spaces that are dynamically formed due to
the movement of crowds. Thus, instead of evaluating crowd den-
sity at different points as in DenseSense, the agents in our model
can directly select a suitable gap to move to, which we believe can
better imitate the behavior of a real person. In addition, we also
model how other agents will follow the gap seeker, which is also
commonly observed in real-life. It should be also noted that our
gap seeker agents are not equivalent to the leader agents in leader-
follower concept in crowd modeling. The leader agents in most of
the existing work [PB06, PAB07, ZZC16] are not endowed with
proactive steering abilities. They are mostly treated as agents who
move based on their planned paths with the determined leading
roles.

3. ProactiveCrowd: Behavior-based Proactive Steering
Modeling

Figure 2 shows the overall framework for modeling proactive steer-
ing in our agent-based crowd simulation. The framework intro-
duces a proactive steering module between the path planning mod-
ule and the reactive collision avoidance module. The path planner
first generates a set of way points for an agent to navigate in a given
environment. Along the path to each way point, the proactive steer-
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ing module is then invoked to monitor the changing environment,
select a suitable behavior (e.g., gap seeking or following) for proac-
tive conflict minimization, and execute the selected behavior from
behavior repository. The execution of the selected behavior will dy-
namically adjust the desired velocity which is originally determined
by the path planner. The desired velocity adjusted by the proac-
tive steering module is then sent to the reactive collision avoidance
module where the actual velocity for immediate collision avoid-
ance with nearby agents and obstacles are determined. At each time
step, the agent moves according to the actual velocity. It is possi-
ble that an agent does not perform any proactive steering behavior
in a given situation. In such case, the agent’s movement is directly
controlled by the underlying reactive collision avoidance module.

Within the proactive steering module, we propose four functional
processes to achieve behavior-based proactive steering. The behav-
ior triggering process monitors the environment and checks if the
condition for triggering a specific behavior is satisfied. For each
proactive steering behavior, we define a specific triggering condi-
tion. For example, for gap seeking behavior, the triggering con-
dition is that the agent should detects gaps and its current posi-
tion is not too close to its goal (i.e., the final destination in the
planned path). The detailed specifications of triggering conditions
are behavior-dependent, which will be described in the follow-
ing sub-sections. For each triggered behavior, the constraint filter-
ing process is then invoked to further examine the current situa-
tion to evaluate the suitability to perform the triggered behavior.
For instance, we define a set of behavioral constraints (see sub-
section 3.1.2) to check whether the detected gaps are suitable for
gap seeking. If all the detected gaps are filtered out based on the
defined constraints, the agent will not perform the gap seeking be-
havior.

After the behavior triggering and constraint filtering processes,
it is possible that multiple behaviors are eligible to perform . In
such cases, we use the priority selection process to choose the be-
havior with the highest priority. In our current implementation, we
simply set gap seeking behavior having a higher priority than fol-
lowing behavior (that is, given that an agent detects a suitable gap
itself, it prefers to seek to the gap rather than to follow another
gap seeker). With more behaviors being incorporated, an advanced
priority scheme will be realized in future. The final process is the
behavior execution process which invokes the motion control al-
gorithm of the selected behavior from the behavior repository and
generates the desired velocity accordingly.

In the following two sub-sections, we will describe the model-
ing of gap seeking and following behaviors respectively, including
their triggering conditions, behavior constraints and motion control
algorithms.

3.1. Gap Seeking Behavior Model

To trigger gap seeking behavior for an agent, we define the trig-
gering condition as an agent detects gaps and its current position is
not too close to its goal. Here, we consider how an agent’s distance
to its current goal affects gap seeking behavior. In reality, a person
may be reluctant to perform gap seeking behavior when she/he is
approaching her/his goal. Thus, we use a probability measure to

decide whether an agent will perform gap seeking behavior given
its distance to its goal. Specifically, the probability Ci(t) for agent i
at time t to perform gap seeking is determined by:

Ci(t) = λ
‖~pi(t)‖

Si
, (1)

where ~pi(t) is the vector from agent i to his goal at time t, Si is the
distance from its initial position to its goal and λ(> 1) is a bounding
parameter. If Ci(t) is greater than 1, it will be set to 1.

Next, we will explain how an agent detects a gap; how to select
a suitable gap based on a set of behavioral constraints; and how to
control the motion of agent for gap seeking in the following sub-
sections.

3.1.1. Gap Detection

An agent first needs to detect available gaps in its surrounding area.
In our framework, agents move in a continuous space. However, it
is inefficient to represent a gap in such environment representation.
Therefore, we introduce a two-layer virtual world representation
for gap detection as shown in Figure 3. The bottom layer is a con-
tinues space where agents perform local steering behavior. The top
layer is a grid map used for gap detection. In our current implemen-
tation, the grid cell size is set to 0.1m× 0.1m, and each agent can
occupy multiple grid cells.

In the grid map, we use a rectangle shape to represent a gap (see
green rectangles in Figure 3). To detect the gaps near an agent, we
first define a detection area D (dashed blue rectangle in Figure 3)
within which the agent performs gap detection. The detecting agent
(i.e., the grey circle in Figure 3) is located at the center of the de-
tection area. For ease of computation, we detect all the gaps sur-
rounding the detecting agent without considering the agent’s mov-
ing direction. In the gap selection step described later on, we will
filter out the gaps that are out of agent’s vision according to its
moving direction. Given the detection area D, we specify the oc-
cupancy area O as the area within D which is occupied by other
agents. The gap detection operation is thus performed within an
exploration area E which is defined as:

E = D−O. (2)

In the grid map, the exploration area E contains the grid cells in the
detection area D which are not occupied by other agents.

Continuous Space

Grid Map

Detection Area

Gap

Figure 3: Layered virtual world representation.

To detect all available gaps within the exploration area E, a ran-
domized algorithm is proposed as shown in Algorithm 1. The algo-
rithm works similar to crystal nucleation and a gap is detected by
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Algorithm 1 Gap Detection Algorithm
1: G←∅ . G is a set of detected gaps
2: P ← UniformlyPick(E) . find a set of growth seeds uni-

formly in E
3: while P is not empty do
4: p← PopRandom(P) . randomly select a seed from P
5: x← NewRectangle(p.x, p.y) . nucleate at p
6: F ← {UP, DOWN, LEFT, RIGHT} . allowed growth di-

rections
7: while F is not empty do
8: x ←Expand(x,F,E) . expand the rectangle until it

reaches the boundaries of area E or the cell occupied by
other agent

9: Remove the current growth direction from F
10: end while
11: Insert(G,x) . Add the detected gap to G
12: end while
13: RemoveDuplicate(G) . Remove the duplicate gaps
14: return G

expanding a random seed (like a crystal seed) in a greedy manner
by consuming nearby uncrystallized cells. A set of seed cells are
first uniformly picked from the exploration area E (line 2 in Algo-
rithm 1). Then, a seed cell is randomly selected and expands from
one of four growth directions by one cell at a time until it reaches
the boundaries of area E or the cell occupied by other agent (lines
4-8 in Algorithm 1). The gap is detected through such rectangle
expansion and it is added to the set of all detected gaps G in each
iteration (line 10 in Algorithm 1). Due to randomness, the detecting
process may yield duplicate gaps from different seed cells. There-
fore, the algorithm removes duplicate gaps in the end (line 12 in
Algorithm 1).

3.1.2. Gap Selection

Given all the detected gaps in G, an agent needs to select the most
desirable gap. In case that G is empty (i.e., no detected gap), the
agent will not proceed to gap selection. To select the most desir-
able gap, we propose four behavioral constraints with given prior-
ities. The behavioral constraint with a higher priority is examined
first and if the detected gap does not satisfy the constraint, the gap
is discarded without checking the lower priority constraints. This
can help to save the computational cost of our model. If no gap is
selected after examining all behavioral constraints (i.e., constraints
filtering process in our framework), the gap seeking behavior will
not be performed. The proposed four constraints with the priorities
from high to low are described as follows.

Constraint G.1: A gap should be within the vision of the detect-
ing agent. As mentioned previously, all surrounding gaps are de-
tected in the gap detection step without considering agent’s mov-
ing direction. In reality, a person’s vision is usually limited to a
fan-shape region centered along the person’s moving direction as
shown in Figure 4. Thus, we need to filter out the gaps that are out
of the vision of the detecting agent.

We check whether a gap is within the agent’s vision using the

Agent_i

vision regiongap in vision

gap out of 
vision

Moving 
direction division radius R

pki

α

θ

͢

Figure 4: Selecting gap(s) based on agent’s vision.

following two rules:

‖~pk
i ‖ ≤ R, (3)

angle(~di,~p
k
i )≤ θ, (4)

where ~pk
i is the vector pointing from agent i’s current location to the

center of the kth detected gap, ‖~pk
i ‖ computes the magnitude of ~pk

i ,
R is the vision radius of an agent, ~di is the vector denoting agent i’s
moving direction, angle() computes the angle between two vectors
in 2D space and θ is half of the vision angle of an agent.

Constraint G.2: A gap should be big enough for the detecting
agent to move in. In our model, if the detected gap is too small, the
detecting agent will not consider it as a desirable gap. Since we use
rectangle to represent a gap, the following rule is used to determine
whether the size of gap is appropriate:

min{wk
i , l

k
i } ≥ 2ri, (5)

where wk
i is the width of the kth gap detected by agent i, lk

i is the
length of the kth gap detected by agent i and ri is the radius of agent
i.

Constraint G.3: A gap should not deviate too much from the de-
tecting agent’s intended moving direction towards final destination.
In our model, we assume that an agent will not choose a gap whose
direction from the agent’s current position deviates too much from
agent’s direction towards its destination (i.e., the final goal agent
aims to reach). This is because an agent may take more effort to
reach its destination if seeking to such gaps. To avoid such gaps,
the following rule is used:

angle(~ui,~p
k
i )≤ ϕ, (6)

where~ui is the vector pointing from agent i’s current location to its
destination and ϕ is a user-defined threshold angle.

Constraint G.4: The agent is the closest one to the selected gap
among all gap seekers to the same gap. This situation occurs when
multiple gap seekers choose the same gap at the same time. If an
agent is not the nearest one to the gap, it will perform the following
behavior rather than the gap seeking behavior. By doing this, only
the one that is closest to the gap will perform gap seeking and others
will follow.
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Given that all the above four constraints are satisfied, it is still
possible that multiple detected gaps are selected. In such cases, the
final selection of the most desirable gap is performed according to
the following rule:

k∗ = argmin(angle(~ui,~p
k
i )), (7)

This means we select the k∗th gap whose direction ~pk
i has the mini-

mum angle with agent’s direction towards its destination. Here, we
assume that an agent selects the gap whose direction is most con-
sistent with the direction towards the agent’s destination.

3.1.3. Gap Seeking

In the last step, an agent needs to update the desired velocity ~vd
i

so as to move to the selected gap. During gap seeking process, a
gap itself also moves due to the movements of its bounding agents.
Thus, we consider a gap as a dynamic moving object as shown in
Figure 5. To take into account of the dynamic nature of the selected
gap, the direction of ~vd

i (i.e., the direction of ~pt+T s

i in Figure 5) is
determined with the following steps.

agent_i at t
vi

gap at t+Tsgap at t

vgap

pti

bounding 
agents

͢

͢

͢

pi
͢ t+Ts

Figure 5: Modeling gap as a dynamic moving object.

Step 1: Estimate the time an agent will take to perform gap seek-
ing behavior as follows.

T s =
‖~pt

i‖
‖~vd

i ‖
, (8)

where T s is the estimated time an agent needs to perform gap seek-
ing behavior, ‖~pt

i‖ is the magnitude of the vector pointing from
agent i’s current location to the center of the selected gap at the
start time t of gap seeking process, ‖~vd

i ‖ is the desired speed of
the agent determined based on Equation 12. It should be noted that
T s only represents a rough estimation of time required to perform
gap seeking based on the agent’s current observations. We believe a
real person may adopt a similar way for estimating the gap seeking
time, given the time limitation in real-life scenarios.

Step 2: Estimate the moving speed of the gap based on the aver-
age speed of its bounding agents as follows.

~vgap =
1
n

n

∑
j=1

~vgap
j , (9)

where~vgap is the velocity of the moving gap,~vgap
j is the velocity of

bounding agents (see Figure 5) of the gap and n is the total number
of bounding agents.

Step 3: Determine the position of gap after T s as follows.

~xgap(t +T s) =~xgap(t)+~vgapT s, (10)

where~xgap(t) is the position of the gap at time t.

Step 4: Determine the moving direction of agent for gap seeking
as follows.

~ed
i =

~xgap(t +T s)−~xi(t)
‖~xgap(t +T s)−~xi(t)‖

, (11)

where ~ed
i is the desired moving direction of the gap seeker agent i

(i.e., the unit vector with the direction of ~pt+T s

i in Figure 5), ~xi(t)
is the agent i′’s position at the time t. It should be noted that the
time T s is only an estimated time based on the current information
(i.e., the current location of gap at time t). This time represents
an agent’s intuition on the time it needs to perform gap seeking
and may not correspond to the actual time for gap seeking. Based
on this estimated time, the projected position of the dynamic gap
after T s is determined. The velocity of the dynamic gap is set as
the average velocity of its bounding agents (i.e., the agents who
form this gap). The desired moving direction of the agent is thus
set from agent’s current position towards the projected position of
the gap after T s.

The magnitude of ~vd
i (i.e., the speed of gap seeker agent) is set

according to the following rule:

‖~vd
i ‖=

Vmax

1+ exp[−β(s−αsmin)]
, (12)

where Vmax is the maximum speed of an agent, s is the area of the
selected gap, smin is the area of the smallest gap we can select (i.e.,
smin = 4 ∗ r2

i in our model), and α ∈ (0,1] and β > 0 are bound-
ing coefficients. According to Equation 12, the speed of the agent
increases when the area of the gap increases. Here, we consider a
large gap attracts an agent more than a small one (i.e., having a
higher chance to successfully seek to the gap). Thus, the agent may
prefer to seek with a higher speed. The highest speed an agent can
take is Vmax and the lowest speed is taken when the area of the gap
is smallest (i.e. smin). For example, ‖~vd

i ‖ = Vmax/2 when s = smin
and both α and β are set to 1.

While moving according to~vd
i , the agent completes the gap seek-

ing behavior under two conditions. The first condition is when a
seeking time T s is expired. The second condition is when the agent
has reached the central point of the selected gap. Until it completes
the gap seeking behavior, the agent will then perform another cycle
of proactive steering process.

3.2. Following Behavior Model

While there are existing efforts [LJK∗12, HLPW14, FETA16] to
model the following behavior of pedestrians in a crowd, most of
them focus on how to simulate the motion of a follower when the
followed pedestrian is pre-defined. In our model, a follower agent
has to dynamically choose a followee (i.e., the followed pedestrian)
among the detected gap seeker and other followers in the same
crowd flow. Thus, apart from modeling the motion of follower, we
also model how to determine the followee of a follower and how
long the following behavior is performed.
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The triggering condition for the following behavior is that an
agent detects a gap seeker or followers of the gap seeker in the same
crowd flow. Once the triggering condition is met, the next task is to
determine whether there is a suitable followee it can follow, which
is determined by the following behavioral constraints.

Constraint F.1: The followee’s moving direction must not devi-
ate much from follower’s own intended moving direction:

angle(~vd
i ,~v

d
e)≤ ρ, (13)

where ~vd
i is the follower agent i’s desired velocity, ~vd

e is its fol-
lowee’s desired velocity and ρ is a user-defined deviation angle.

Constraint F.2: The followee has not been followed by another
agent. Given the space constraint in high-density crowd, we assume
that the following behavior is performed as a chain with one agent
followed by another one. This constraint is thus to ensure that an
agent can only be followed by another agent.

If there is no suitable followee according to the two constraints,
the following behavior will not be performed. Otherwise, an agent
i probabilistically chooses a followee using a multinomial logit-
based model as:

Pj = exp(−τdi j)/
K

∑
k

exp(−τdik), (14)

where Pj is the probability of choosing agent j as followee, di j is
the distance between agent i and j, K is the number of potential fol-
lowee agents according to the two aforementioned constraints and
τ(> 0) is a control parameter. According to Equation 14, a potential
followee agent closer to the follower agent has higher probability
to be selected as the followee.

Once an agent has selected a followee to follow, it will perform
the following behavior until a following time has expired or the
followee is out of vision. The following time is determined as:

T f
j = T f

j−1−∆tm = T s−
j

∑
m=1

∆tm, (15)

where T f
j is the following time of the jth follower, T f

j−1 is the fol-
lowing time of the ( j− 1)th follower (i.e., the followee of jth fol-
lower), ∆tm is the time difference between the starting times of the
jth and the ( j−1)th followers to perform following behavior, and
T s is the gap seeking time of the gap seeker (i.e., followee of the
1st follower). Given a sequence of gap seeker and its followers, the
following time of the follower decreases by ∆tm time. By doing so,
we can avoid the following behavior to be propagated indefinitely
in the crowd. In real-life, we can observe that only people who are
close to a gap seeker are more likely to perform the following be-
havior. Note that once T f

j becomes less or equal to zero, the jth
follower and subsequent agents will not perform the following be-
havior any more.

During the following process, an follower agent needs to update
the desired velocity~vd

i so as to follow the selected followee. We use
a weighted vector summation similar to [HLPW14] to determine
the moving direction of a follower agent as follows:

~ed
i = η~e j +(1−η)~ni j, (16)

where ~ed
i is the desired moving direction of follower agent i, ~e j is

the moving direction of the selected followee agent j,~ni j is the unit
vector pointing from agent i to agent j and η = exp(−κ ∗ di j) is
a coefficient which depends on the distance between the follower
and the followee (i.e., di j) with a bounding fraction κ > 0.

To determine the magnitude of ~vd
i , we adopt a velocity-based

distance acceleration model which maintains a distance between
the follower and the followee according to follower’s current speed.
The acceleration and the desired speed of a follower agent i are
determined as:

ai = ω(di j−ξ−ψ~vi ·~ed
i ), (17)

‖~vd
i ‖=~vi ·~ed

i +ai∆t, (18)

where ~vi is the current velocity of the follower i, ∆t is the sim-
ulation time step, and ω,ξ,ψ are control parameters that need to
determined according to the specific scenario.

4. Case Study

In this section, we conduct a case study by applying our proposed
ProactiveCrowd to simulate two real world scenarios involving in-
tersecting crowd flows (i.e., perpendicular flows and bi-directional
flows). To evaluate the effectiveness of ProactiveCrowd, we com-
pare it with a state-of-the-art crowd model DenseSense [BNCM14],
which introduces a density-dependent filter for proactive crowd
steering. The simulation outputs generated by our model (i.e.,
ProactiveCrowd) and DenseSense are compared against the real
world data extracted from the real-world scenarios. To comprehen-
sively evaluate the performance of our model, the simulation results
are evaluated at both individual-behavior level and crowd level. In
this section, we first describes the scenario being modeled and the
simulation settings. Then, we present our experiments at two levels
and the simulation results.

4.1. Scenarios Description

(b) Bi-directional crowd scenario(a) Perpendicular crowd scenario

Figure 6: Sample frames of perpendicular and bi-directional
crowd scenarios. Snapshots are obtained from [SMD] and [Her]
respectively.

We apply ProactiveCrowd to simulate two typical real-world
crowd scenarios. The first one is a perpendicular crowd scenario
where two crowd flows move with an intersecting angle of around
90 degree (see Figure 6 (a)). The second one is a bi-directional
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crowd scenario where two crowd flows move in opposite direc-
tions. The first scenario was performed by Plaue et al. at Technische
Universität Berlin during the Long Night of the Sciences 2010 in
Berlin [PCBS11] and the second scenario was performed be Zhang
et al. in hall 2 of the fairground at Dusseldorf (Germany) [ZKSS12].

In the first scenario, one group of 54 individuals moves from
left to right on a plain ground. Another group of 46 individuals
moves from bottom to top starting at a 1.81m wide staircase. The
region where the two crowd flows intersect is about 3m×3m. From
the recorded videos of the scenario, we can observe the proactive
steering behaviors including both the gap seeking behavior and the
following behavior among the crowd. We obtain the individuals’
trajectories data from [SMD]. The trajectory data are captured at
15 fps.

In the second scenario, Zhang et al. [ZKSS12] have performed
several experiments under different crowd and environment set-
tings. In this work, we choose a dataset where 141 individuals move
from left to right and 163 individuals move from right to left in a
the corridor with width of 3.6m and length of 8m. The destinations
of individuals were chosen based on a number given to them in ad-
vance (odd-numbered individuals move to the left at the end of the
corridor, even-numbered individuals move to the right at the end
of the corridor). For the recorded video, we can also observe the
gap seeking behavior and following behavior among the crowd. We
obtain the individuals’ trajectories data from [Her]. The trajectory
data are captured at 16fps.

4.2. Simulation Settings

Our agent-based crowd simulation is implemented with Repast
Simphony†. 3D visualization is realized in Unity3D‡. As the en-
vironment of the simulated scenario is relatively simple, we do not
use any path planning algorithm to generate a path for global nav-
igation. The target location of an agent is directly set to its cor-
responding individual’s location at the last frame in the trajecto-
ries data. The initial location of an agent is set based on the cor-
responding individual’s first position in the trajectories data. The
initial speed of an agent is set to be the average speed of the cor-
responding individual in the first three recorded frames. The local
steering behavior for avoiding oncoming collisions is implemented
using the social-force model [HFV00]. The DenseSense model is
also an augmented model which can choose different local colli-
sion avoidance algorithms for local steering. For fair comparison,
the DenseSense model also operates over the social-force model.

Using the recorded data of the two scenarios being studied, we
have calibrated our model and the DenseSense model using evo-
lutionary algorithm [JHS07] with 6-fold cross validation. For the
gap seeking behavior model, the values of calibrated parameters
are as follows. The detection area D is 3m×3m. The vision radius
and angle of an agent is set to 2.5m and 120 degree respectively. α

and β values in Equation 12 are set to be 0.5 and 0.75 respectively.
Vmax of an agent is 1.34m/s and the radius of agent is 0.25m. For

† Repast: http://repast.sourceforge.net/repast_simphony.php
‡ Unity3D: http://unity3d.com/

the following behavior model, the calibrated parameters are as fol-
lows. The deviation angle ρ is 120 degree. The control parameter
τ in Equation 14 is set to 0.65. The bounding fraction κ in Equa-
tion 16 is 0.26. The control parameters ω,ξ,ψ in the follower’s ac-
celeration Equation 17 are 1.2, 0.35, and 0.65 respectively. For the
DenseSense model, the stride factor and stride buffer for determin-
ing the natural walking speed are set to be 3.0 and 0.2 respectively.
The σ parameter in the Gaussian density function for determining
density of neighbouring agents is set to 2.2. The simulation time
step is set to be the same as the frame rate in the trajectories data
(i.e., 0.067s for perpendicular crowd scenario and 0.0625s for bi-
directional crowd scenario).

4.3. Experimental Results and Discussions

4.3.1. Individual Level Evaluation

To evaluate how our model can replicate the individual-level proac-
tive steering behaviors that are observed in real crowds, we con-
ducted both the visual inspection through 3D visualization and
qualitative evaluation using a trajectory similarity metric.

(a) Visual inspection of individual behaviors

To visually observe the individual behaviors in the scenario, we
have visualized simulation results produced by our model, Proac-
tiveCrowd, and the DenseSense model in Unity3D and compared
them with the corresponding real world crowd data. Figure 7 shows
the snapshots of the 3D visualizations for the two scenarios respec-
tively. For more details, a demo video can be found in the link§.
To make it easy to observe the agents performing proactive steer-
ing behavior in our model, we color-code the gap seeker agents and
follower agents as orange-shirt and green-shirt agents respectively.
The corresponding agents in the DenseSense model are populated
using the same color-code and these individuals are circled in the
real world crowd data. From Figure 7, it can be observed that our
model is able to replicate both gap seeking and following behaviors
of agents that can be observed in real world data. However, the cor-
responding agents in the DenseSense model do not exhibit such gap
seeker-followers patterns under the same situation. Furthermore, it
can also be observed that the gap seeker and follower agents can af-
fect the lane formations especially in the bi-directional crowd sce-
nario. As such, the crowd dynamics generated by our model also
have a closer match to that in real world data.

(b) Trajectory similarity evaluation

To quantitatively evaluate the performance of ProactiveCrowd,
we compare the trajectory similarity between our agents and the
corresponding human data. We adopt the Longest Common Sub-
sequence (LCSS) metric which has been proven to be very robust
to noise for trajectory similarity comparison [VKG02]. The LCSS
similarity metric is calculated as follows:

SLCSS(Trreal,Trsim) =
LCSS(Trreal,Trsim)

min(m,n)
(19)

§ Demo video: https://youtu.be/kcJ_B1eOS5Y
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Real World Crowd Our ModelDenseSense Model

Figure 7: Frames of real world crowd videos and 3D visualizations of simulation results from our model, ProactiveCrowd, and the Dens-
eSense model for perpendicular (top) and bi-directional (bottom) crowd scenarios.

, where Trreal and Trsim are real world and simulated trajectories
with size m and n respectively. LCSS(T real

r ,T sim
r ) is recursively de-

fined as follows:

0 m=0 |n=0
1+LCSSδ,ε(Head(Trreal),Head(Trsim)) dE(an−bm)< ε

& |n−m| ≤ δ

max(LCSSδ,ε(Head(Trreal),Trsim),

LCSSδ,ε(Trreal,Head(Trsim))) otherwise
(20)

where δ is a user-defined constant which controls how far to stretch
in time so as to match a given point from one trajectory to a point
in another trajectory, ε is a user-defined constant specifying the
matching threshold, Head(Trreal) and Head(Trsim) are the first
n−1 and m−1 points in Trreal and Trsim respectively, dE(an−bm)
is the Euclidean distance between the nth point in Trreal and mth
point in Trsim. As pointed out in [VKG02], the LCSS provides an
intuitive notion of similarity between trajectories by giving more
weight to the similar portions of the sequences. It has been proven
that the performance of LCSS is very stable and efficient for indi-
vidual trajectory comparison [ZHT06].

Table 1: Average SLCSS and its standard deviation (in parentheses)
over 10 independent runs, unit (%)

Scenarios DenseSense Our model p-value

Perpendicular 55.73(1.17) 78.20(2.5) <0.0001
Bi-directional 75.12(1.76) 81.26(1.26) <0.0005

Using the LCSS metric, we select and evaluate the agents per-
forming gap seeking and following behaviors and some nearby
agents which may be affected by such behaviors. For each se-
lected agent, we extract its trajectory during the time period it (or

its neighbouring agent) performs proactive steering behavior (usu-
ally about 5 to 10 seconds) and evaluate the SLCSS with the cor-
responding trajectory data of real person. Then, we calculate the
average of SLCSS over all the selected agents. For the perpendicular
crowd scenario, we randomly select and evaluate nineteen agents,
which have performed proactive steering behaviors in our model
or are in the vicinity of the agents performing proactive steering
behaviors. Similarly, sixty of agents are selected and evaluated for
the bi-directional crowd scenario. For comparison, we evaluate the
same set of the agents using both our model, ProactiveCrowd, and
the DenseSense model. For each model, we run 10 independent
simulation runs with different random seeds. With the setting of
δ = 20% and ε = 0.4 for LCSS, the average SLCSS over multiple
runs and multiple agents for each scenario are shown in Table 1.

It can been seen that our model, ProactiveCrowd, can yield
higher trajectory similarities for both scenarios than the Dens-
eSense model. This indicates that our model can generate individ-
ual behaviors of agents that are more closer to real world data. The
results are generally consistent with our observations from the vi-
sual inspection of 3D visualization. To test the statistical signif-
icance of our results, we conduct one-tailed two-sample t-test at
0.05 significance level. Our research hypothesis (i.e., the alterna-
tive hypothesis in t-test) is that the the simulation using our model
can yield higher SLCSS value compared to the one using the Dens-
eSense model. The small p-values from t-tests as shown in Table 1
strongly suggest that our research hypothesis is supported.

From Table 1, we can also find that our model outperforms the
DenseSense model more significantly in the perpendicular crowd
scenario than in the bi-directional crowd scenario. This is probably
due to that the gap seeking behaviors in the perpendicular crowd
scenario are performed in a more abrupt manner as the environment
is less constrained than the bi-directional scenario. Based on our
analysis of the video data, the average turning angle for gap seek-
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Figure 8: Fundamental diagram for real human data, DenseSense and our model, ProactiveCrowd, in two scenarios.

ing behavior is about 60 degree in the perpendicular crowd scenario
whereas it is about 30 degree in the bi-directional. Thus, if such
behavior is not properly simulated in the perpendicular crowd sce-
nario, the trajectory difference to the real world data will be more
apparent.

4.3.2. Crowd Level Evaluation

To evaluate the overall crowd dynamics, we compare the simulated
crowd behavior with the behavior of real humans first by examining
the speed-density relationship of agents using the fundamental di-
agram [WJGO∗14], and second, by using a relative distance error
metric proposed in [JHS07] which compares the temporal-spatial
difference between the simulation results and real world data. We
provide comparison results using our model, ProactiveCrowd, and
the DenseSense model.

(a) Fundamental diagrams evaluation

The fundamental diagram is commonly used to evaluate pedes-
trian dynamics, which characterizes the observed relationship be-
tween pedestrian speed and density (usually speed decreases as
density increases). The procedure to construct the fundamental di-
agram is similar to the one adopted in the work for the DenseSense
model [NBCM15]. For each scenario, we first define a rectangu-
lar region where each agent must pass through. The regions are
3m× 3m and 4m× 3.6m rectangles at the center of the simulated
area for the perpendicular and bi-directional crowd scenarios re-
spectively. Then, we record the time interval for each agent to pass
through the region and compute the average density of the agents
in that region during that interval. In such a way, a single density-
speed pair for each agent is recorded. The density-speed pairs for
all agents are shown as a scatter plot in Figure 8.

In Figure 8, we present the fundamental diagrams extracted from
the real human data, and the simulation results from both our
model, ProactiveCrowd, and the DenseSense model. It can be ob-
served that both models can generate the crowd dynamics that ex-
hibit the downward trend of pedestrian’s speed with the increase of

crowd density. However, the distribution of density-speed pairs of
our model appear to be more consistent with that of real world data.
We can also observe some discrepancies between the results from
the DenseSense model and real human data. For example, as shown
in Figure 8 (a), the DenseSense model generates some agents with
a high density (i.e., greater than 2.2people/m2) in perpendicular
crowd scenario, whereas we do not observe individuals with such
density in the corresponding real world data. This indicates that the
DenseSense model may generate congestions which did not hap-
pen in real-life situations. This is probably due to agent’s inability
to accurately perform the proactive steering behavior like gap seek-
ing. In perpendicular crowd scenario, gap seeking behavior allows
agent to redirect moving direction in a more abrupt manner, which
can greatly help to avoid potential congestions.

(b) Progressive distance error evaluation

To further evaluate the spatial-temporal difference between the
crowd dynamics generated by the simulation model and that ob-
tained from real world data, we adopt the progressive distance error
metric proposed in [JHS07], which is calculated as follows:

σerr =
1

n∗K

n

∑
i=1

t0+K∗∆s

∑
tk=t0

‖xsim
i (tk +T )− xreal

i (tk +T )‖
‖xreal

i (tk +T )− xreal
i (tk)‖

(21)

where xreal
i (tk) is the position of individual i in real world data at

time tk, T is a user-defined running period and xsim
i (tk +T ) is the

position of corresponding agent i after it moves according to the
simulation model for a running period of T with the simulation
starts at time tk. For a single agent, the evaluation are performed
at different starting times tk with a total number of K evaluations
for every ∆s time steps (15 time steps in our implementation). The
overall distance error σerr at crowd level is then obtained by aver-
aging the error distances of all the simulated agents, where n is the
total number of agents. Here, we use σerr instead of direct LCSS
metric, as such progressive difference metric has shown to be more
effective to reflect the model difference for simulation spanning
over a period of time with a larger number of agents [WJGO∗14].
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Table 2: The relative distance error σerr and its standard deviation
(in parentheses) over 50 independent runs

Scenarios T DenseSense Our model p-value

Perpendicular
1.675 0.37(0.021) 0.27(0.017) <0.0001
2.68 0.39(0.035) 0.22(0.029) <0.0005

Bi-directional
1.56 0.57(0.025) 0.50(0.032) <0.0001
2.5 0.50(0.024) 0.42(0.015) <0.0005

For model evaluation based on σerr, we first perform the sim-
ulations using our model and the DenseSense model for 50 inde-
pendent runs respectively and each run is set with different random
seed. We then calculate σerr over 50 runs in two cases for each
scenario: T=1.675s (i.e., 25 simulation time steps), T=2.68s (i.e.,
40 simulation time steps) for perpendicular crowd scenario and
T=1.56s (i.e., 25 simulation time steps), T=2.5s (i.e., 40 simulation
time steps) for bi-directional crowd scenario. Table 2 shows the re-
sults of our evaluation. It can been seen that our proposed model has
yielded smaller σerr value against real world data than the Dens-
eSense model for both scenarios under different running periods.
This suggests that our model can generally produce crowd behav-
iors closer to the real world data. It can also be seen in Table 2 that
simulation results are better in perpendicular crowd scenario than
bi-directional crowd scenario for both models. This is probably be-
cause that bi-directional scenario has a denser crowd within a con-
strained environment where more frequent local collision avoid-
ances may occur and cause the actual velocities of agents be more
easily deviated from the desired velocity for proactive steering.

To test the statistical significance of our results, we also conduct
one-tailed two-sample t-test at 0.05 significance level. Our research
hypothesis (i.e., the alternative hypothesis in t-test) is that the sim-
ulation using our proposed model can generate crowd behaviors
which have smaller σerr value compared to the one using the Dens-
eSense model. The small p-values from t-tests as shown in Table 2
strongly suggest that our research hypothesis is supported.

5. Conclusions

In real-life scenarios, we often observe people adopt proactive
steering strategies to avoid potential collisions with others. For
agent-based crowd simulation, how to incorporate these proactive
steering strategies is essential to ensure the realism of simulation. In
this paper, we present ProactiveCrowd, a behavior-based approach
to modeling proactive steering behaviors for agent-based crowd
simulation. An overall modeling framework is introduced which
determines how a suitable proactive steering behavior should be
selected in a given situation and how to execute the selected be-
havior. With the focus on intersecting crowd scenario, the detailed
behavior models for two inter-related proactive steering behaviors,
namely gap seeking and following, are proposed. By applying our
models to two real-world scenario, we demonstrated the validity of
our models with the comparison of another state-of-the-art crowd
model (i.e., the DenseSense model). Our ProactiveCrowd shows
better or at least comparable performances in terms of the realism
of simulation results. It also offers a more intuitive and direct way

to capture the proactive steering behaviors of agents in contrast to
most of the prediction-based models.

Currently, the two behaviors being modelled in ProactiveCrowd,
gap seeking and following, are mainly observed in the scenarios
where two crowds are intersecting. When ProactiveCrowd is ap-
plied to more complex scenarios (e.g., multiple flows of crowds
in a shopping mall or train station), using just gap seeking and
following may become inadequate. Some other proactive steering
strategies, such as overtaking and stop-and-go, may be considered.
Therefore, our future work is to investigate more crowd scenarios
and propose new proactive steering behavior models to comple-
ment the existing ones. In addition, how different local collision
avoidance models as well as path planning models could affect the
performance of our models also needs to be further investigated.
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