19 research outputs found

    Path Integral Approach for Superintegrable Potentials on Spaces of Non-constant Curvature: II. Darboux Spaces DIII and DIV

    Get PDF
    This is the second paper on the path integral approach of superintegrable systems on Darboux spaces, spaces of non-constant curvature. We analyze in the spaces \DIII and \DIV five respectively four superintegrable potentials, which were first given by Kalnins et al. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is determined by a higher order polynomial equation. We show that also the free motion in Darboux space of type III can contain bound states, provided the boundary conditions are appropriate. We state the energy spectrum and the wave-functions, respectively

    Interrogation laser for a strontium lattice clock

    Full text link
    We report on the setup and characterization of a 698 nm master-slave diode laser system to probe the 1S0-3P0 clock transition of strontium atoms confined in a one-dimensional optical lattice. A linewidth in the order of around 100 Hz of the laser system has been measured with respect to an ultrastable 657 nm diode laser with 1 Hz linewidth using a femtosecond fiber comb as transfer oscillator. The laser has been used to measure the magnetically induced 1S0-3P0 clock transition in 88Sr where a linewidth of 165 Hz has been observed. The transfer oscillator method provides a virtual beat signal between the two diode lasers that has been used to phase lock the 698 nm laser to the 1 Hz linewidth laser at 657 nm, transferring its stability to the 698 nm laser system.Comment: 5 pages, 7 figures, to be published in "IEEE Transactions on Instrumentation and Measurement, Special Issue CPEM 2008

    Fano resonances in a three-terminal nanodevice

    Full text link
    The electron transport through a quantum sphere with three one-dimensional wires attached to it is investigated. An explicit form for the transmission coefficient as a function of the electron energy is found from the first principles. The asymmetric Fano resonances are detected in transmission of the system. The collapse of the resonances is shown to appear under certain conditions. A two-terminal nanodevice with an additional gate lead is studied using the developed approach. Additional resonances and minima of transmission are indicated in the device.Comment: 11 pages, 5 figures, 2 equations are added, misprints in 5 equations are removed, published in Journal of Physics: Condensed Matte

    Experimental measurement-device-independent quantum digital signatures

    Get PDF
    The development of quantum networks will be paramount towards practical and secure telecommunications. These networks will need to sign and distribute information between many parties with information-Theoretic security, requiring both quantum digital signatures (QDS) and quantum key distribution (QKD). Here, we introduce and experimentally realise a quantum network architecture, where the nodes are fully connected using a minimum amount of physical links. The central node of the network can act either as a totally untrusted relay, connecting the end users via the recently introduced measurement-device-independent (MDI)-QKD, or as a trusted recipient directly communicating with the end users via QKD. Using this network, we perform a proof-of-principle demonstration of QDS mediated by MDI-QKD. For that, we devised an efficient protocol to distil multiple signatures from the same block of data, thus reducing the statistical fluctuations in the sample and greatly enhancing the final QDS rate in the finite-size scenario

    Genetic modifiers of radon-induced lung cancer risk: a genome-wide interaction study in former uranium miners

    Get PDF
    PURPOSE: Radon is a risk factor for lung cancer and uranium miners are more exposed than the general population. A genome-wide interaction analysis was carried out to identify genomic loci, genes or gene sets that modify the susceptibility to lung cancer given occupational exposure to the radioactive gas radon. METHODS: Samples from 28 studies provided by the International Lung Cancer Consortium were pooled with samples of former uranium miners collected by the German Federal Office of Radiation Protection. In total, 15,077 cases and 13,522 controls, all of European ancestries, comprising 463 uranium miners were compared. The DNA of all participants was genotyped with the OncoArray. We fitted single-marker and in multi-marker models and performed an exploratory gene-set analysis to detect cumulative enrichment of significance in sets of genes. RESULTS: We discovered a genome-wide significant interaction of the marker rs12440014 within the gene CHRNB4 (OR = 0.26, 95% CI 0.11-0.60, p = 0.0386 corrected for multiple testing). At least suggestive significant interaction of linkage disequilibrium blocks was observed at the chromosomal regions 18q21.23 (p = 1.2 × 10-6), 5q23.2 (p = 2.5 × 10-6), 1q21.3 (p = 3.2 × 10-6), 10p13 (p = 1.3 × 10-5) and 12p12.1 (p = 7.1 × 10-5). Genes belonging to the Gene Ontology term "DNA dealkylation involved in DNA repair" (GO:0006307; p = 0.0139) or the gene family HGNC:476 "microRNAs" (p = 0.0159) were enriched with LD-blockwise significance. CONCLUSION: The well-established association of the genomic region 15q25 to lung cancer might be influenced by exposure to radon among uranium miners. Furthermore, lung cancer susceptibility is related to the functional capability of DNA damage signaling via ubiquitination processes and repair of radiation-induced double-strand breaks by the single-strand annealing mechanism
    corecore