86 research outputs found

    Detection of interstellar oxidaniumyl: abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334

    Get PDF
    We identify a prominent absorption feature at 1115 GHz, detected in first HIFI spectra towards high-mass star-forming regions, and interpret its astrophysical origin. The characteristic hyperfine pattern of the H2O+ ground-state rotational transition, and the lack of other known low-energy transitions in this frequency range, identifies the feature as H2O+ absorption against the dust continuum background and allows us to derive the velocity profile of the absorbing gas. By comparing this velocity profile with velocity profiles of other tracers in the DR21 star-forming region, we constrain the frequency of the transition and the conditions for its formation. In DR21, the velocity distribution of H2O+ matches that of the [CII] line at 158\mu\m and of OH cm-wave absorption, both stemming from the hot and dense clump surfaces facing the HII-region and dynamically affected by the blister outflow. Diffuse foreground gas dominates the absorption towards Sgr B2. The integrated intensity of the absorption line allows us to derive lower limits to the H2O+ column density of 7.2e12 cm^-2 in NGC 6334, 2.3e13 cm^-2 in DR21, and 1.1e15 cm^-2 in Sgr B2.Comment: Accepted for publication in A&

    Perceived stressors of climate vulnerability across scales in the Savannah zone of Ghana: a participatory approach

    Get PDF
    Smallholder farmers in sub-Saharan Africa are confronted with climatic and non-climatic stressors. Research attention has focused on climatic stressors, such as rainfall variability, with few empirical studies exploring non-climatic stressors and how these interact with climatic stressors at multiple scales to affect food security and livelihoods. This focus on climatic factors restricts understanding of the combinations of stressors that exacerbate the vulnerability of farming households and hampers the development of holistic climate change adaptation policies. This study addresses this particular research gap by adopting a multi-scale approach to understand how climatic and non-climatic stressors vary, and interact, across three spatial scales (household, community and district levels) to influence livelihood vulnerability of smallholder farming households in the Savannah zone of northern Ghana. This study across three case study villages utilises a series of participatory tools including semi-structured interviews, key informant interviews and focus group discussions. The incidence, importance, severity and overall risk indices for stressors are calculated at the household, community, and district levels. Results show that climatic and non-climatic stressors were perceived differently; yet, there were a number of common stressors including lack of money, high cost of farm inputs, erratic rainfall, cattle destruction of crops, limited access to markets and lack of agricultural equipment that crossed all scales. Results indicate that the gender of respondents influenced the perception and severity assessment of stressors on rural livelihoods at the community level. Findings suggest a mismatch between local and district level priorities that have implications for policy and development of agricultural and related livelihoods in rural communities. Ghana’s climate change adaptation policies need to take a more holistic approach that integrates both climatic and non-climatic factors to ensure policy coherence between national climate adaptation plans and District development plans

    Methods for the guideline-based development of quality indicators--a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quality indicators (QIs) are used in many healthcare settings to measure, compare, and improve quality of care. For the efficient development of high-quality QIs, rigorous, approved, and evidence-based development methods are needed. Clinical practice guidelines are a suitable source to derive QIs from, but no gold standard for guideline-based QI development exists. This review aims to identify, describe, and compare methodological approaches to guideline-based QI development.</p> <p>Methods</p> <p>We systematically searched medical literature databases (Medline, EMBASE, and CINAHL) and grey literature. Two researchers selected publications reporting methodological approaches to guideline-based QI development. In order to describe and compare methodological approaches used in these publications, we extracted detailed information on common steps of guideline-based QI development (topic selection, guideline selection, extraction of recommendations, QI selection, practice test, and implementation) to predesigned extraction tables.</p> <p>Results</p> <p>From 8,697 hits in the database search and several grey literature documents, we selected 48 relevant references. The studies were of heterogeneous type and quality. We found no randomized controlled trial or other studies comparing the ability of different methodological approaches to guideline-based development to generate high-quality QIs. The relevant publications featured a wide variety of methodological approaches to guideline-based QI development, especially regarding guideline selection and extraction of recommendations. Only a few studies reported patient involvement.</p> <p>Conclusions</p> <p>Further research is needed to determine which elements of the methodological approaches identified, described, and compared in this review are best suited to constitute a gold standard for guideline-based QI development. For this research, we provide a comprehensive groundwork.</p

    Rate-dependent Ca2+ signalling underlying the force-frequency response in rat ventricular myocytes: A coupled electromechanical modeling study

    Get PDF
    Rate-dependent effects on the Ca2+ sub-system in a rat ventricular myocyte are investigated. Here, we employ a deterministic mathematical model describing various Ca2+ signalling pathways under voltage clamp (VC) conditions, to better understand the important role of calmodulin (CaM) in modulating the key control variables Ca2+/calmodulin-dependent protein kinase-II (CaMKII), calcineurin (CaN), and cyclic adenosine monophosphate (cAMP) as they affect various intracellular targets. In particular, we study the frequency dependence of the peak force generated by the myofilaments, the force-frequency response (FFR). Our cell model incorporates frequency-dependent CaM-mediated spatially heterogenous interaction of CaMKII and CaN with their principal targets (dihydropyridine (DHPR) and ryanodine (RyR) receptors and the SERCA pump). It also accounts for the rate-dependent effects of phospholamban (PLB) on the SERCA pump; the rate-dependent role of cAMP in up-regulation of the L-type Ca2+ channel (ICa;L); and the enhancement in SERCA pump activity via phosphorylation of PLB.Our model reproduces positive peak FFR observed in rat ventricular myocytes during voltage-clamp studies both in the presence/absence of cAMP mediated -adrenergic stimulation. This study provides quantitative insight into the rate-dependence of Ca2+-induced Ca2+-release (CICR) by investigating the frequency-dependence of the trigger current (ICa;L) and RyR-release. It also highlights the relative role of the sodium-calcium exchanger (NCX) and the SERCA pump at higher frequencies, as well as the rate-dependence of sarcoplasmic reticulum (SR) Ca2+ content. A rigorous Ca2+ balance imposed on our investigation of these Ca2+ signalling pathways clarifies their individual roles. Here, we present a coupled electromechanical study emphasizing the rate-dependence of isometric force developed and also investigate the temperature-dependence of FFR. Our model provides mechanistic biophysically based explanations for the rate-dependence of CICR, generating useful and testable hypotheses. Although rat ventricular myocytes exhibit a positive peak FFR in the presence/absence of beta-adrenergic stimulation, they show a characteristic increase in the positive slope in FFR due to the presence of Norepinephrine or Isoproterenol. Our study identifies cAMP-mediated stimulation, and rate-dependent CaMKII-mediated up-regulation of ICa;L as the key mechanisms underlying the aforementioned positive FFR

    Detection of interstellar oxidaniumyl: Abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334

    Get PDF
    Aims. We identify a prominent absorption feature at 1115 GHz, detected in first HIFI spectra towards high-mass star-forming regions, and interpret its astrophysical origin. Methods. The characteristic hyperfine pattern of the H2O+ ground-state rotational transition, and the lack of other known low-energy transitions in this frequency range, identifies the feature as H2O+ absorption against the dust continuum background and allows us to derive the velocity profile of the absorbing gas. By comparing this velocity profile with velocity profiles of other tracers in the DR21 star-forming region, we constrain the frequency of the transition and the conditions for its formation. Results. In DR21, the velocity distribution of H2O+ matches that of the [Cii] line at 158 μm and of OH cm-wave absorption, both stemming from the hot and dense clump surfaces facing the Hii-region and dynamically affected by the blister outflow. Diffuse foreground gas dominates the absorption towards Sgr B2. The integrated intensity of the absorption line allows us to derive lower limits to the H2O+ column density of 7.2 × 1012 cm−2 in NGC 6334, 2.3 × 1013 cm−2 in DR21, and 1.1 × 1015 cm−2 in Sgr B2

    Bioaccumulation and Toxicity of Organic Chemicals in Terrestrial Invertebrates

    Get PDF
    Terrestrial invertebrates are key components in ecosystems, with crucial roles in soil structure, functioning, and ecosystem services. The present chapter covers how terrestrial invertebrates are impacted by organic chemicals, focusing on up-to-date information regarding bioavailability, exposure routes and general concepts on bioaccumulation, toxicity, and existing models. Terrestrial invertebrates are exposed to organic chemicals through different routes, which are dependent on both the organismal traits and nature of exposure, including chemical properties and media characteristics. Bioaccumulation and toxicity data for several groups of organic chemicals are presented and discussed, attempting to cover plant protection products (herbicides, insecticides, fungicides, and molluscicides), veterinary and human pharmaceuticals, polycyclic aromatic compounds, polychlorinated biphenyls, flame retardants, and personal care products. Chemical mixtures are also discussed bearing in mind that chemicals appear simultaneously in the environment. The biomagnification of organic chemicals is considered in light of the consumption of terrestrial invertebrates as novel feed and food sources. This chapter highlights how science has contributed with data from the last 5 years, providing evidence on bioavailability, bioaccumulation, and toxicity derived from exposure to organic chemicals, including insights into the main challenges and shortcomings to extrapolate results to real exposure scenarios

    Validation of biomarkers to predict response to immunotherapy in cancer: Volume I — pre-analytical and analytical validation

    Full text link
    corecore