122 research outputs found

    Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies

    Get PDF
    Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca2+ sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin–actin association or tropomyosin head-to-tail binding

    Progressive Structural Defects in Canine Centronuclear Myopathy Indicate a Role for HACD1 in Maintaining Skeletal Muscle Membrane Systems

    Get PDF
    Mutations in HACD1/PTPLA cause recessive congenital myopathies in humans and dogs. Hydroxyacyl-coA dehydratases are required for elongation of very long chain fatty acids, and HACD1 has a role in early myogenesis, but the functions of this striated muscle-specific enzyme in more differentiated skeletal muscle remain unknown. Canine HACD1 deficiency is histopathologically classified as a centronuclear myopathy (CNM). We investigated the hypothesis that muscle from HACD1-deficient dogs has membrane abnormalities in common with CNMs with different genetic causes. We found progressive changes in tubuloreticular and sarcolemmal membranes and mislocalized triads and mitochondria in skeletal muscle from animals deficient in HACD1. Furthermore, comparable membranous abnormalities in cultured HACD1-deficient myotubes provide additional evidence that these defects are a primary consequence of altered HACD1 expression. Our novel findings, including T-tubule dilatation and disorganization, associated with defects in this additional CNM-associated gene provide a definitive pathophysiologic link with these disorders, confirm that dogs deficient in HACD1 are relevant models, and strengthen the evidence for a unifying pathogenesis in CNMs via defective membrane trafficking and excitation-contraction coupling in muscle. These results build on previous work by determining further functional roles of HACD1 in muscle and provide new insight into the pathology and pathogenetic mechanisms of HACD1 CNM. Consequently, alterations in membrane properties associated with HACD1 mutations should be investigated in humans with related phenotypes

    Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource

    Get PDF
    Supplemental Data Supplemental Data include 65 figures and can be found with this article online at http://dx.doi.org/10.1016/j.ajhg.2017.04.015. Supplemental Data Document S1. Figures S1–S65 Download Document S2. Article plus Supplemental Data Download Web Resources ClinGen, https://www.clinicalgenome.org/ ClinGen Gene Curation, https://www.clinicalgenome.org/working-groups/gene-curation/ ClinGen Gene Curation SOP, https://www.clinicalgenome.org/working-groups/gene-curation/projects-initiatives/gene-disease-clinical-validity-sop/ ClinGen Knowledge Base, https://search.clinicalgenome.org/kb/agents/sign_up OMIM, http://www.omim.org/ Orphanet, http://www.orpha.net/consor/cgi-bin/index.php With advances in genomic sequencing technology, the number of reported gene-disease relationships has rapidly expanded. However, the evidence supporting these claims varies widely, confounding accurate evaluation of genomic variation in a clinical setting. Despite the critical need to differentiate clinically valid relationships from less well-substantiated relationships, standard guidelines for such evaluation do not currently exist. The NIH-funded Clinical Genome Resource (ClinGen) has developed a framework to define and evaluate the clinical validity of gene-disease pairs across a variety of Mendelian disorders. In this manuscript we describe a proposed framework to evaluate relevant genetic and experimental evidence supporting or contradicting a gene-disease relationship and the subsequent validation of this framework using a set of representative gene-disease pairs. The framework provides a semiquantitative measurement for the strength of evidence of a gene-disease relationship that correlates to a qualitative classification: “Definitive,” “Strong,” “Moderate,” “Limited,” “No Reported Evidence,” or “Conflicting Evidence.” Within the ClinGen structure, classifications derived with this framework are reviewed and confirmed or adjusted based on clinical expertise of appropriate disease experts. Detailed guidance for utilizing this framework and access to the curation interface is available on our website. This evidence-based, systematic method to assess the strength of gene-disease relationships will facilitate more knowledgeable utilization of genomic variants in clinical and research settings

    Responsibility and identity and genomic sequencing : a comparison of published recommendations and patient perspectives on accepting or declining incidental findings

    Get PDF
    Background The use of genomic sequencing techniques is increasingly being incorporated into mainstream health care. However, there is a lack of agreement on how “incidental findings” (IFs) should be managed and a dearth of research on patient perspectives. Methods In‐depth qualitative interviews were carried out with 31 patients undergoing genomic sequencing at a regional genetics service in England. Interviews explored decisions around IFs and were comparatively analyzed with published recommendations from the literature. Results Thirteen participants opted to receive all IFs from their sequence, 12 accepted some and rejected others, while six participants refused all IFs. The key areas from the literature, (a) genotype/phenotype correlation, (b) seriousness of the condition, and (c) implications for biological relatives, were all significant; however, patients drew on a broader range of social and cultural information to make their decisions. Conclusion This study highlights the range of costs and benefits for patients of receiving IFs from a genomic sequence. While largely positive views toward the dissemination of genomic data were reported, ambivalence surrounding genetic responsibility and its associated behaviors (e.g., duty to inform relatives) was reported by both IF decliners and accepters, suggesting a need to further explore patient perspectives on this highly complex topic area

    Newborn Sequencing in Genomic Medicine and Public Health

    Get PDF
    The rapid development of genomic sequencing technologies has decreased the cost of genetic analysis to the extent that it seems plausible that genome-scale sequencing could have widespread availability in pediatric care. Genomic sequencing provides a powerful diagnostic modality for patients who manifest symptoms of monogenic disease and an opportunity to detect health conditions before their development. However, many technical, clinical, ethical, and societal challenges should be addressed before such technology is widely deployed in pediatric practice. This article provides an overview of the Newborn Sequencing in Genomic Medicine and Public Health Consortium, which is investigating the application of genome-scale sequencing in newborns for both diagnosis and screening

    Génétique

    No full text
    • 

    corecore