128 research outputs found

    Inhibition of C5aR1 as a promising approach to treat taxane-induced neuropathy

    Get PDF
    : Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of several antitumor agents resulting in progressive and often irreversible damage of peripheral nerves. In addition to their known anticancer effects, taxanes, including paclitaxel, can also induce peripheral neuropathy by activating microglia and astrocytes, which release pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin 1-beta (IL-1β), and chemokine (C-C motif) ligand 2 (CCL-2). All these events contribute to the maintenance of neuropathic or inflammatory response. Complement component 5a (C5a)/C5a receptor 1 (C5aR1) signaling was very recently shown to play a crucial role in paclitaxel-induced peripheral neuropathy. Our recent findings highlighted that taxanes have the previously unreported property of binding and activating C5aR1, and that C5aR1 inhibition by DF3966A is effective in preventing paclitaxel-induced peripheral neuropathy (PIPN) in animal models. Here, we investigated if C5aR1 inhibition maintains efficacy in reducing PIPN in a therapeutic setting. Furthermore, we characterized the role of C5aR1 activation by paclitaxel and the CIPN-associated activation of nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome. Our results clearly show that administration of the C5aR1 inhibitor strongly reduced cold and mechanical allodynia in mice when given both during the onset of PIPN and when neuropathy is well established. C5aR1 activation by paclitaxel was found to be a key event in the induction of inflammatory factors in spinal cord, such as TNF-α, ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP). In addition, C5aR1 inhibition significantly mitigated paclitaxel-induced inflammation and inflammasome activation by reducing IL-1β and NLRP3 expression at both sciatic and dorsal root ganglia level, confirming the involvement of inflammasome in PIPN. Moreover, paclitaxel-induced upregulation of C5aR1 was significantly reduced by DF3966A treatment in central nervous system. Lastly, the antinociceptive effect of C5aR1 inhibition was confirmed in an in vitro model of sensory neurons in which we focused on receptor channels usually activated upon neuropathy. In conclusion, C5aR1 inhibition is proposed as a therapeutic option with the potential to exert long-term protective effect on PIPN-associated neuropathic pain and inflammation

    Sleep assessment in a population-based study of chronic fatigue syndrome

    Get PDF
    BACKGROUND: Chronic fatigue syndrome (CFS) is a disabling condition that affects approximately 800,000 adult Americans. The pathophysiology remains unknown and there are no diagnostic markers or characteristic physical signs or laboratory abnormalities. Most CFS patients complain of unrefreshing sleep and many of the postulated etiologies of CFS affect sleep. Conversely, many sleep disorders present similarly to CFS. Few studies characterizing sleep in unselected CFS subjects have been published and none have been performed in cases identified from population-based studies. METHODS: The study included 339 subjects (mean age 45.8 years, 77% female, 94.1% white) identified through telephone screen in a previously described population-based study of CFS in Wichita, Kansas. They completed questionnaires to assess fatigue and wellness and 2 self-administered sleep questionnaires. Scores for five of the six sleep factors (insomnia/hypersomnia, non-restorative sleep, excessive daytime somnolence, sleep apnea, and restlessness) in the Centre for Sleep and Chronobiology's Sleep Assessment Questionnaire(© )(SAQ(©)) were dichotomized based on threshold. The Epworth Sleepiness Scale score was used as a continuous variable. RESULTS: 81.4% of subjects had an abnormality in at least one SAQ(© )sleep factor. Subjects with sleep factor abnormalities had significantly lower wellness scores but statistically unchanged fatigue severity scores compared to those without SAQ(© )abnormality. CFS subjects had significantly increased risk of abnormal scores in the non-restorative (adjusted odds ratio [OR] = 28.1; 95% confidence interval [CI]= 7.4–107.0) and restlessness (OR = 16.0; 95% CI = 4.2–61.6) SAQ(© )factors compared to non-fatigued, but not for factors of sleep apnea or excessive daytime somnolence. This is consistent with studies finding that, while fatigued, CFS subjects are not sleepy. A strong correlation (0.78) of Epworth score was found only for the excessive daytime somnolence factor. CONCLUSIONS: SAQ(© )factors describe sleep abnormalities associated with CFS and provide more information than the Epworth score. Validation of these promising results will require formal polysomnographic sleep studies

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Developing Crisis Training Software for Local Governments – From User Needs to Generic Requirements

    Get PDF
    In this paper we analyze and present the generic requirements identified for a software aiming at supporting crisis management training in local governments. The generic requirements are divided into overall requirements, requirements connected to the trainer’s role and requirements connected to the trainee’s role. Moreover, the requirements are mapped to problems as well as opportunities. Finally, we present examples of elaborations of the addressed requirements based on software design considerations. In our work we applied a design science approach and the artifact presented in this paper is a list of generic requirement. The presented requirements and the systems development process used, provide guidelines for systems analysts and developers in future systems development projects aiming at constructing new software for crisis management training

    The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms

    Get PDF
    : The mitogen-activated protein kinase (MAPK) and PI3K pathways are regulated by extensive crosstalk, occurring at different levels. In tumors, transactivation of the alternate pathway is a frequent "escape" mechanism, suggesting that combined inhibition of both pathways may achieve synergistic antitumor activity. Here we show that, in the M14 melanoma model, simultaneous inhibition of both MEK and mammalian target of rapamycin (mTOR) achieves synergistic effects at suboptimal concentrations, but becomes frankly antagonistic in the presence of relatively high concentrations of MEK inhibitors. This observation led to the identification of a novel crosstalk mechanism, by which either pharmacologic or genetic inhibition of constitutive MEK signaling restores phosphatase and tensin homolog (PTEN) expression, both in vitro and in vivo, and inhibits downstream signaling through AKT and mTOR, thus bypassing the need for double pathway blockade. This appears to be a general regulatory mechanism and is mediated by multiple mechanisms, such as MAPK-dependent c-Jun and miR-25 regulation. Finally, PTEN upregulation appears to be a major effector of MEK inhibitors' antitumor activity, as cancer cells in which PTEN is inactivated are consistently more resistant to the growth inhibitory and anti-angiogenic effects of MEK blockade

    Smart homes and their users:a systematic analysis and key challenges

    Get PDF
    Published research on smart homes and their users is growing exponentially, yet a clear understanding of who these users are and how they might use smart home technologies is missing from a field being overwhelmingly pushed by technology developers. Through a systematic analysis of peer-reviewed literature on smart homes and their users, this paper takes stock of the dominant research themes and the linkages and disconnects between them. Key findings within each of nine themes are analysed, grouped into three: (1) views of the smart home-functional, instrumental, socio-technical; (2) users and the use of the smart home-prospective users, interactions and decisions, using technologies in the home; and (3) challenges for realising the smart home-hardware and software, design, domestication. These themes are integrated into an organising framework for future research that identifies the presence or absence of cross-cutting relationships between different understandings of smart homes and their users. The usefulness of the organising framework is illustrated in relation to two major concerns-privacy and control-that have been narrowly interpreted to date, precluding deeper insights and potential solutions. Future research on smart homes and their users can benefit by exploring and developing cross-cutting relationships between the research themes identified

    Maternal polycystic ovary syndrome and risk of neuropsychiatric disorders in offspring: Prenatal androgen exposure or genetic confounding?

    Get PDF
    Background: Maternal polycystic ovary syndrome (PCOS) has been proposed as a model for investigating the role of prenatal androgen exposure in the development of neuropsychiatric disorders. However, women with PCOS are at higher risk of developing psychiatric conditions and previous studies are likely confounded by genetic influences. Methods: A Swedish nationwide register-based cohort study was conducted to disentangle the influence of prenatal androgen exposure from familial confounding in the association between maternal PCOS and offspring attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASD), and Tourette's disorder and chronic tic disorders (TD/CTD). PCOS-exposed offspring (n = 21 280) were compared with unrelated PCOS-unexposed offspring (n = 200 816) and PCOS-unexposed cousins (n = 17 295). Associations were estimated with stratified Cox regression models. Results: PCOS-exposed offspring had increased risk of being diagnosed with ADHD, ASD, and TD/CTD compared with unrelated PCOS-unexposed offspring. Associations were stronger in girls for ADHD and ASD but not TD/CTD [ADHD: adjusted hazard ratio (aHR) = 1.61 (95% confidence interval (CI) 1.31-1.99), ASD: aHR = 2.02 (95% CI 1.45-2.82)] than boys [ADHD: aHR = 1.37 (95% CI 1.19-1.57), ASD: aHR = 1.46 (95% CI 1.21-1.76)]. For ADHD and ASD, aHRs for girls were stronger when compared with PCOS-unexposed cousins, but slightly attenuated for boys. Conclusions: Estimates were similar when accounting for familial confounding (i.e. genetics and environmental factors shared by cousins) and stronger in girls for ADHD and ASD, potentially indicating a differential influence of prenatal androgen exposure v. genetic factors. These results strengthen evidence for a potential causal influence of prenatal androgen exposure on the development of male-predominant neuropsychiatric disorders in female offspring of women with PCOS

    Dancing With Parkinson's Disease: The SI-ROBOTICS Study Protocol

    Get PDF
    Introduction: Parkinson's disease (PD) is one of the most frequent causes of disability among older people, characterized by motor disorders, rigidity, and balance problems. Recently, dance has started to be considered an effective exercise for people with PD. In particular, Irish dancing, along with tango and different forms of modern dance, may be a valid strategy to motivate people with PD to perform physical activity. The present protocol aims to implement and evaluate a rehabilitation program based on a new system called “SI-ROBOTICS,” composed of multiple technological components, such as a social robotic platform embedded with an artificial vision setting, a dance-based game, environmental and wearable sensors, and an advanced AI reasoner module. Methods and Analysis: For this study, 20 patients with PD will be recruited. Sixteen therapy sessions of 50 min will be conducted (two training sessions per week, for 8 weeks), involving two patients at a time. Evaluation will be primarily focused on the acceptability of the SI-ROBOTICS system. Moreover, the analysis of the impact on the patients' functional status, gait, balance, fear of falling, cardio-respiratory performance, motor symptoms related to PD, and quality of life, will be considered as secondary outcomes. The trial will start in November 2021 and is expected to end by April 2022. Discussions: The study aims to propose and evaluate a new approach in PD rehabilitation, focused on the use of Irish dancing, together with a new technological system focused on helping the patient perform the dance steps and on collecting kinematic and performance parameters used both by the physiotherapist (for the evaluation and planning of the subsequent sessions) and by the system (to outline the levels of difficulty of the exercise). Ethics and Dissemination: The study was approved by the Ethics Committee of the IRCCS INRCA. It was recorded in ClinicalTrials.gov on the number NCT05005208. The study findings will be used for publication in peer-reviewed scientific journals and presentations in scientific meetings

    Reproducibility of histopathological findings in experimental pathology of the mouse: a sorry tail

    Get PDF
    Reproducibility of in vivo\textit{in vivo} research using the mouse as a model organism depends on many factors, including experimental design, strain or stock, experimental protocols, and methods of data evaluation. Gross and histopathology are often the endpoints of such research and there is increasing concern about the accuracy and reproducibility of diagnoses in the literature. To reproduce histopathological results, the pathology protocol, including necropsy methods and slide preparation, should be followed by interpretation of the slides by a pathologist familiar with reading mouse slides and familiar with the consensus medical nomenclature used in mouse pathology. Likewise, it is important that pathologists are consulted as reviewers of manuscripts where histopathology is a key part of the investigation. The absence of pathology expertise in planning, executing and reviewing in vivo\textit{in vivo} research using mice leads to questionable pathology-based findings and conclusions from studies, even in high-impact journals. We discuss the various aspects of this problem, give some examples from the literature and suggest solutions.This work was supported in part by US National Institutes of Health grants R01 AR049288, CA089713 and R21 AR063781 (to J.P.S.) and by The Warden and Fellows of Robinson College, Cambridge (to P.N.S.)

    In Situ Microscopy Analysis Reveals Local Innate Immune Response Developed around Brucella Infected Cells in Resistant and Susceptible Mice

    Get PDF
    Brucella are facultative intracellular bacteria that chronically infect humans and animals causing brucellosis. Brucella are able to invade and replicate in a broad range of cell lines in vitro, however the cells supporting bacterial growth in vivo are largely unknown. In order to identify these, we used a Brucella melitensis strain stably expressing mCherry fluorescent protein to determine the phenotype of infected cells in spleen and liver, two major sites of B. melitensis growth in mice. In both tissues, the majority of primary infected cells expressed the F4/80 myeloid marker. The peak of infection correlated with granuloma development. These structures were mainly composed of CD11b+ F4/80+ MHC-II+ cells expressing iNOS/NOS2 enzyme. A fraction of these cells also expressed CD11c marker and appeared similar to inflammatory dendritic cells (DCs). Analysis of genetically deficient mice revealed that differentiation of iNOS+ inflammatory DC, granuloma formation and control of bacterial growth were deeply affected by the absence of MyD88, IL-12p35 and IFN-γ molecules. During chronic phase of infection in susceptible mice, we identified a particular subset of DC expressing both CD11c and CD205, serving as a reservoir for the bacteria. Taken together, our results describe the cellular nature of immune effectors involved during Brucella infection and reveal a previously unappreciated role for DC subsets, both as effectors and reservoir cells, in the pathogenesis of brucellosis
    corecore