146 research outputs found

    Infrared ellipsometry study of photogenerated charge carriers at the (001) and (110) surfaces of SrTiO3\mathrm{SrTi}{\mathrm{O}}_{3} crystals and at the interface of the corresponding LaAlO3/SrTiO3\mathrm{LaAl}{\mathrm{O}}_{3}/\mathrm{SrTi}{\mathrm{O}}_{3} heterostructures

    Get PDF
    With infrared (IR) ellipsometry and dc resistance measurements, we investigated the photodoping at the (001) and (110) surfaces of SrTiO3 (STO) single crystals and at the corresponding interfaces of LaAlO3/SrTiO3 (LAO/STO) heterostructures. In the bare STO crystals, we find that the photogenerated charge carriers, which accumulate near the (001) surface, have a similar depth profile and sheet carrier concentration as the confined electrons that were previously observed in LAO/STO (001) heterostructures. A large fraction of these photogenerated charge carriers persist at low temperature at the STO (001) surface even after the ultraviolet light has been switched off again. These persistent charge carriers seem to originate from oxygen vacancies that are trapped at the structural domain boundaries, which develop below the so-called antiferrodistortive transition at T∗=105K. This is most evident from a corresponding photodoping study of the dc transport in STO (110) crystals for which the concentration of these domain boundaries can be modified by applying a weak uniaxial stress. The oxygen vacancies and their trapping by defects are also the source of the electrons that are confined to the interface of LAO/STO (110) heterostructures, which likely do not have a polar discontinuity as in LAO/STO (001). In the former, the trapping and clustering of the oxygen vacancies also has a strong influence on the anisotropy of the charge carrier mobility. We show that this anisotropy can be readily varied and even inverted by various means, such as a gentle thermal treatment, UV irradiation, or even a weak uniaxial stress. Our experiments suggest that extended defects, which develop over long time periods (of weeks to months), can strongly influence the response of the confined charge carriers at the LAO/STO (110) interface

    Pitfalls in the measurement of muscle mass: a need for a reference standard

    Get PDF
    Background All proposed definitions of sarcopenia include the measurement of muscle mass, but the techniques and threshold values used vary. Indeed, the literature does not establish consensus on the best technique for measuring lean body mass. Thus, the objective measurement of sarcopenia is hampered by limitations intrinsic to assessment tools. The aim of this study was to review the methods to assess muscle mass and to reach consensus on the development of a reference standard. Methods Literature reviews were performed by members of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis working group on frailty and sarcopenia. Face‐to‐face meetings were organized for the whole group to make amendments and discuss further recommendations. Results A wide range of techniques can be used to assess muscle mass. Cost, availability, and ease of use can determine whether the techniques are better suited to clinical practice or are more useful for research. No one technique subserves all requirements but dual energy X‐ray absorptiometry could be considered as a reference standard (but not a gold standard) for measuring muscle lean body mass. Conclusions Based on the feasibility, accuracy, safety, and low cost, dual energy X‐ray absorptiometry can be considered as the reference standard for measuring muscle mass

    High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station

    Get PDF
    A precision measurement by AMS of the positron fraction in primary cosmic rays in the energy range from 0.5 to 500 GeV based on 10.9 million positron and electron events is presented. This measurement extends the energy range of our previous observation and increases its precision. The new results show, for the first time, that above &sim;200GeV the positron fraction no longer exhibits an increase with energy.</p

    Mechanical Behavior and Microstructural Development of Low-Carbon Steel and Microcomposite Steel Reinforcement Bars Deformed under Quasi-Static and Dynamic Shear Loading

    Get PDF
    Reinforcement bars of microcomposite (MC) steel, composed of lath martensite and minor amounts of retained austenite, possess improved strength and corrosion characteristics over low-carbon (LC) steel rebar; however, their performance under shear loading has not previously been investigated at the microstructural level. In this study, LC and MC steel cylinders were compression tested, and specimens machined into a forced-shear geometry were subjected to quasi-static and dynamic shear loading to determine their shear behavior as a function of the strain and strain rate. The as-received and sheared microstructures were examined using optical microscopy (OM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). Higher-resolution microstructural examinations were performed using transmission electron microscopy (TEM). The influence of the starting microstructure on the shear behavior was found to depend strongly on the strain rate; the MC steel exhibited not only greater strain-rate sensitivity than the LC steel but also a greater resistance to shear localization with load. In both steels, despite differences in the starting microstructure, post-mortem observations were consistent with a continuous mechanism operating within adiabatic shear bands (ASBs), in which subgrains rotated into highly misoriented grains containing a high density of dislocations

    Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    Knowledge of the precise rigidity dependence of the helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays. A precise measurement of the helium flux in primary cosmic rays with rigidity (momentum/charge) from 1.9 GV to 3 TV based on 50 million events is presented and compared to the proton flux. The detailed variation with rigidity of the helium flux spectral index is presented for the first time. The spectral index progressively hardens at rigidities larger than 100 GV. The rigidity dependence of the helium flux spectral index is similar to that of the proton spectral index though the magnitudes are different. Remarkably, the spectral index of the proton to helium flux ratio increases with rigidity up to 45 GV and then becomes constant; the flux ratio above 45 GV is well described by a single power law.</p

    Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge of the rigidity dependence of the proton flux is important in understanding the origin, acceleration, and propagation of cosmic rays. We present the detailed variation with rigidity of the flux spectral index for the first time. The spectral index progressively hardens at high rigidities.</p
    corecore