18 research outputs found

    A brief journey into the history of, and future sources and uses of fatty acids

    Get PDF
    The authors would like to thank the Engineering and Physical Sciences Research Council, University of St. Andrews, and the EPSRC Centre for Doctoral Training in Critical Resource Catalysis (CRITICAT) for financial support (Ph.D. studentship to MC; Grant code: EP/L016419/1).Fats and lipids have always had a primarily role in the history of humankind, from the ancient civilisations to the modern and contemporary time, going from domestic and cosmetic uses, to the first medical applications and later to the large scale industrial uses for food, pharmaceutical, cosmetics and biofuel production. Sources and uses of those have changed during time following the development of chemical sciences and industrial technological advances. Plants, fish and animal fats have represented the primary source of lipids and fats for century. Nowadays the use of fatty acid sources has taken a turn: industries are mainly interested in polyunsaturated fatty acids (PUFAs), which have beneficial properties in human health; and also, for high-value fatty acids product for innovative and green production of biofuel and feedstocks. Thus, the constant increase in demand of fatty acids, the fact that marine and vegetable sources are not adequate to meet the high level of fatty acids required worldwide and climate change, have determined the necessity of the search for renewable and sustainable sources for fatty acids. Biotechnological advances and bioengineering have started looking at the genetic modification of algae, bacteria, yeasts, seeds and plants to develop cell-factory able to produce high value fatty acid products in renewable and sustainable manner. This innovative approach applied to FAs industry is a peculiar example of how biotechnology can serve as powerful mean to drive the production of high value fatty acid derivatives on the concept of circular bioeconomy, based on the reutilisation of organic resources for alternative and sustainable productive patterns that are environmentally friendly.Publisher PDFPeer reviewe

    The lipidome of Crithidia fasiculata and its plasticity

    Get PDF
    We would like to thank the Engineering and Physical Sciences Research Council, University of St. Andrews, and the EPSRC Centre for Doctoral Training in Critical Resource Catalysis (CRITICAT) for financial support [Ph.D. studentship to MC; Grant code: EP/L016419/1].Crithidia fasiculata belongs to the trypanosomatidae order of protozoan parasites, bearing close relation to other kinetoplastid parasites such as Trypanosoma brucei and Leishmania spp. As an early diverging lineage of eukaryotes, the study of kinetoplastid parasites has provided unique insights into alternative mechanisms to traditional eukaryotic metabolic pathways. Crithidia are a monogenetic parasite for mosquito species and have two distinct lifecycle stages both taking place in the mosquito gut. These consist of a motile choanomastigote form and an immotile amastigote form morphologically similar to amastigotes in Leishmania. Owing to their close relation to Leishmania, Crithidia are a growing research tool, with continuing interest in its use as a model organism for kinetoplastid research with the added benefit that they are non-pathogenic to humans and can be grown with no special equipment or requirements for biological containment. Although comparatively little research has taken place on Crithidia, similarities to other kinetoplast species has been shown in terms of energy metabolism and genetics. Crithidia also show similarities to kinetoplastids in their production of the monosaccharide D-arabinopyranose similar to Leishmania, which is incorporated into a lipoarabinogalactan a major cell surface GPI-anchored molecule. Additionally, Crithidia have been used as a eukaryotic expression system to express proteins from other kinetoplastids and potentially other eukaryotes including human proteins allowing various co- and post-translational protein modifications to the recombinant proteins. Despite the obvious usefulness and potential of this organism very little is known about its lipid metabolism. Here we describe a detailed lipidomic analyses and demonstrate the possible placidity of Crithidia’s lipid metabolis. This could have important implications for biotechnology approaches and how other kinetoplastids interact with, and scavenge nutrients from their hosts.Publisher PDFPeer reviewe

    Changes in plasma free fatty acids in obese patients before and after bariatric surgery highlight alterations in lipid metabolism

    Get PDF
    This work was supported by the British Heart Foundation (grant ref: FS/20/3/34956).Obesity is a complex disease that increases an individual’s risk of developing other diseases and health-related problems. A common feature is dyslipidemia characterized by increased levels of plasma lipids, which include non-esterified fatty acids (NEFAs). The role of NEFAs in obesity-related morbidity is interesting as NEFAs constitute a reservoir of metabolic energy, are principal components of cell membranes and are precursors for signalling molecules. Bariatric surgery promotes sustained weight loss in severely obese patients, reducing the incidence and severity of co-morbidities. In this study we measure changes in circulating NEFA species in plasma samples taken from 25 obese individuals before and 9 months after Roux-en-Y gastric bypass surgery. The mean weight of the cohort reduced by 29.2% from 149.0±25.1 kg pre-surgery to 105.5±19.8 kg post-surgery and the BMI by 28.2% from 51.8±6.3 kg/m2 pre-surgery to 37.2±5.4 kg/m2. Mean glycated haemoglobin (HbA1c) reduced from 6.5±1.3% to 5.5±0.5%, consistent with the intervention leading to improved glycaemic control, particularly in those who were dysglycemic prior to surgery. Total and LDL cholesterol concentrations were markedly reduced following surgery. Concentrations of seven NEFAs were found to decrease 9 months after surgery compared to pre-surgery levels: myristate, palmitoleate, palmitate, linoleate, oleate, stearate and arachidonate. Bariatric surgery led to increased lipogenesis and elongase activity and decreased stearoyl-CoA desaturase 1 activity. This study thus highlights metabolic changes that take place following gastric bypass surgery in severely obese patients.Publisher PDFPeer reviewe

    Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes

    Get PDF
    © 2020 Zoltner et al. Introduced about a century ago, suramin remains a frontline drug for the management of early-stage East African trypanosomiasis (sleeping sickness). Cellular entry into the causative agent, the protozoan parasite Trypanosoma brucei, occurs through receptor-mediated endocytosis involving the parasite's invariant surface glycoprotein 75 (ISG75), followed by transport into the cytosol via a lysosomal transporter. The molecular basis of the trypanocidal activity of suramin remains unclear, but some evidence suggests broad, but specific, impacts on trypanosome metabolism (i.e. polypharmacology). Here we observed that suramin is rapidly accumulated in trypanosome cells proportionally to ISG75 abundance. Although we found little evidence that suramin disrupts glycolytic or glycosomal pathways, we noted increased mitochondrial ATP production, but a net decrease in cellular ATP levels. Metabolomics highlighted additional impacts on mitochondrial metabolism, including partial Krebs' cycle activation and significant accumulation of pyruvate, corroborated by increased expression of mitochondrial enzymes and transporters. Significantly, the vast majority of suramin-induced proteins were normally more abundant in the insect forms compared with the blood stage of the parasite, including several proteins associated with differentiation. We conclude that suramin has multiple and complex effects on trypanosomes, but unexpectedly partially activates mitochondrial ATP-generating activity. We propose that despite apparent compensatory mechanisms in drug-challenged cells, the suramin-induced collapse of cellular ATP ultimately leads to trypanosome cell death

    Discovery of sustainable drugs for neglected tropical diseases: cashew nutshell liquid (CNSL)-based hybrids target mitochondrial function and ATP production in Trypanosoma brucei.

    Get PDF
    In a search for effective and sustainable treatments for trypanosomiasis, we developed a library of hybrid compounds by merging the structural features of a previously synthesized quinone hit (4) with those of long‐chain phenolic constituents from cashew nut shell liquid (CNSL). CNSL is an agro‐waste product from cashew nut processing factories with great potential as a precursor for the production of drugs. The synthesized compounds were tested against Trypanosoma brucei brucei, including three multi‐drug resistant strains (B48, ISMR1, and aqp2/aqp3‐KO), T. congolense, and a human cell line (HFF). The most potent activity was found against T. b. brucei, the causative agent of African trypanosomiasis. Shorter‐chain derivatives were more active than the starting hit in parasite growth inhibition, displaying rapid trypanocidal activity with low micromolar EC50 values, but no discernable toxicity on human cell lines. Preliminary studies probing their mode of action on trypanosomes showed depletion of cellular ATP, followed by the depolarization of the mitochondrial membrane and ultrastructural damage to the mitochondrion. This was accompanied by the production of high levels of reactive oxygen species. We envisage that such hybrid compounds, obtained from renewable and inexpensive material, might be promising bio‐based, sustainable hits for anti‐trypanosomatid drug discovery

    Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes

    Get PDF
    Introduced about a century ago, suramin remains a frontline drug for the management of early-stage East African trypanosomiasis (sleeping sickness). Cellular entry into the causative agent, the protozoan parasite Trypanosoma brucei, occurs through receptor-mediated endocytosis involving the parasite’s invariant surface glycoprotein 75 (ISG75), followed by transport into the cytosol via a lysosomal transporter. The molecular basis of the trypanocidal activity of suramin remains unclear, but some evidence suggests broad, but specific, impacts on trypanosome metabolism (i.e. polypharmacology). Here we observed that suramin is rapidly accumulated in trypanosome cells proportionally to ISG75 abundance. Although we found little evidence that suramin disrupts glycolytic or glycosomal pathways, we noted increased mitochondrial ATP production, but a net decrease in cellular ATP levels. Metabolomics highlighted additional impacts on mitochondrial metabolism, including partial Krebs’ cycle activation and significant accumulation of pyruvate, corroborated by increased expression of mitochondrial enzymes and transporters. Significantly, the vast majority of suramin-induced proteins were normally more abundant in the insect forms compared with the blood stage of the parasite, including several proteins associated with differentiation. We conclude that suramin has multiple and complex effects on trypanosomes, but unexpectedly partially activates mitochondrial ATP-generating activity. We propose that despite apparent compensatory mechanisms in drug-challenged cells, the suramin-induced collapse of cellular ATP ultimately leads to trypanosome cell death

    European propolis is highly active against trypanosomatids including Crithidia fasciculata.

    Get PDF
    Extracts of 35 samples of European propolis were tested against wild type and resistant strains of the protozoal pathogens Trypanosoma brucei, Trypanosoma congolense and Leishmania mexicana. The extracts were also tested against Crithidia fasciculata a close relative of Crithidia mellificae, a parasite of bees. Crithidia, Trypanosoma and Leishmania are all members of the order Kinetoplastida. High levels of activity were obtained for all the samples with the levels of activity varying across the sample set. The highest levels of activity were found against L. mexicana. The propolis samples were profiled by using liquid chromatography with high resolution mass spectrometry (LC-MS) and principal components analysis (PCA) of the data obtained indicated there was a wide variation in the composition of the propolis samples. Orthogonal partial least squares (OPLS) associated a butyrate ester of pinobanksin with high activity against T. brucei whereas in the case of T. congolense high activity was associated with methyl ethers of chrysin and pinobanksin. In the case of C. fasciculata highest activity was associated with methyl ethers of galangin and pinobanksin. OPLS modelling of the activities against L. mexicana using the mass spectrometry produced a less successful model suggesting a wider range of active components

    The AGILE Mission

    Get PDF
    AGILE is an Italian Space Agency mission dedicated to observing the gamma-ray Universe. The AGILE's very innovative instrumentation for the first time combines a gamma-ray imager (sensitive in the energy range 30 MeV-50 GeV), a hard X-ray imager (sensitive in the range 18-60 keV), a calorimeter (sensitive in the range 350 keV-100 MeV), and an anticoincidence system. AGILE was successfully launched on 2007 April 23 from the Indian base of Sriharikota and was inserted in an equatorial orbit with very low particle background. Aims. AGILE provides crucial data for the study of active galactic nuclei, gamma-ray bursts, pulsars, unidentified gamma-ray sources, galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. Methods. An optimal sky angular positioning (reaching 0.1 degrees in gamma- rays and 1-2 arcmin in hard X-rays) and very large fields of view (2.5 sr and 1 sr, respectively) are obtained by the use of Silicon detectors integrated in a very compact instrument. Results. AGILE surveyed the gamma- ray sky and detected many Galactic and extragalactic sources during the first months of observations. Particular emphasis is given to multifrequency observation programs of extragalactic and galactic objects. Conclusions. AGILE is a successful high-energy gamma-ray mission that reached its nominal scientific performance. The AGILE Cycle-1 pointing program started on 2007 December 1, and is open to the international community through a Guest Observer Program
    corecore