
REVIEW
published: 20 July 2021

doi: 10.3389/fnut.2021.570401

Frontiers in Nutrition | www.frontiersin.org 1 July 2021 | Volume 8 | Article 570401

Edited by:

Kathleen L. Hefferon,

Cornell University, United States

Reviewed by:

Michel Lagarde,

Institut National des Sciences

Appliquées de Lyon (INSA

Lyon), France

Xue Pan,

University of California, Riverside,

United States

*Correspondence:

Terry K. Smith

tks1@st-andrews.ac.uk

Specialty section:

This article was submitted to

Nutrition and Sustainable Diets,

a section of the journal

Frontiers in Nutrition

Received: 09 June 2020

Accepted: 21 June 2021

Published: 20 July 2021

Citation:

Cerone M and Smith TK (2021) A Brief

Journey into the History of and Future

Sources and Uses of Fatty Acids.

Front. Nutr. 8:570401.

doi: 10.3389/fnut.2021.570401

A Brief Journey into the History of
and Future Sources and Uses of
Fatty Acids
Michela Cerone and Terry K. Smith*

Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom

Fats and lipids have always had a primary role in the history of humankind, from ancient

civilisations to the modern and contemporary time, going from domestic and cosmetic

uses, to the first medical applications and later to the large-scale industrial uses for

food, pharmaceutical, cosmetics, and biofuel production. Sources and uses of those

have changed during time following the development of chemical sciences and industrial

technological advances. Plants, fish, and animal fats have represented the primary source

of lipids and fats for century. Nowadays, the use of fatty acid sources has taken a

turn: industries are mainly interested in polyunsaturated fatty acids (PUFAs), which have

beneficial properties in human health; and also, for high-value fatty acids product for

innovative and green production of biofuel and feedstocks. Thus, the constant increase

in demand of fatty acids, the fact that marine and vegetable sources are not adequate

to meet the high level of fatty acids required worldwide and climate change, have

determined the necessity of the search for renewable and sustainable sources for fatty

acids. Biotechnological advances and bioengineering have started looking at the genetic

modification of algae, bacteria, yeasts, seeds, and plants to develop cell factory able to

produce high value fatty acid products in a renewable and sustainable manner. This

innovative approach applied to FA industry is a peculiar example of how biotechnology

can serve as a powerful mean to drive the production of high value fatty acid derivatives

on the concept of circular bioeconomy, based on the reutilisation of organic resources

for alternative and sustainable productive patterns that are environmentally friendly.

Keywords: Cell-factory, polyunsaturated fatty acids, biofuels, biotechnology, microalgae, plants, oleaginous

microorganisms, sustainable sources

INTRODUCTION

Throughout the history of humankind, fats and lipids have been considered extremely important
because of their value in food, cosmetics, and natural medicine, as well as many other domestic
applications (such as cooking and candle wax). The first recorded usage of vegetable oils and animal
fats dates back to Mesopotamia (7,000 BC) (Figure 1) and ancient Egypt (5,000 BC) (Figure 1)
(1). They were used for cosmetic applications such as body oils and lotions. Around 2,000 BC
(Figure 1), these populations started producing scented oils for mummification and for personal
hygiene, healthcare, and cosmetics. They introduced a new technique based onmaceration in oils of
flowers, leaves, spices, resins, and in some cases, pigments (1). Contemporary documents describe
a surprisingly broad number of sources of oils, fats, and waxes. From very common seeds such as
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Cerone and Smith Sources and Uses of FAs

FIGURE 1 | Timeline of fatty acid source discovery, applications, and advances throughout history.

linseed and poppy seeds, to indigenous trees like cedar and
palm, fruits such as olives and avocados, fish and even some
remarkable animal oils such as hippopotamus or crocodile oils,
it is clear that even in more primitive ages the knowledge of
lipids was more developed than we assume (1). This tradition
was followed by the great Mediterranean societies of the ancient
Greeks and Romans (Figure 1). They introduced new techniques
for production of oils and lotions such as distillation and seed
pressing (2). Between 400 and 1,000 AD (Figure 1), despite
the world being preoccupied by the Dark Ages, in some part
of Europe and in China, Japan, and North America, great
advances were made in the usage of oils and fats especially
applied to medicine and alchemy (3, 4). During the Middle Ages,
curative properties started to be attributed to oils and fats and
were documented in the Mediaeval and seventeenth centuries
European Pharmacopoeias (Figure 1) (5).

With the advent of organic and lipid chemistry and
the industrial revolution, production methods used changed
radically and started to move toward large-scale production
(6). An example of the first innovative process introduced on
a large scale between the seventeenth and eighteenth centuries
was saponification (Figure 1). The basic process for making
soap known so far was to boil animal fats or oils with a
strong alkali, with incorporation of salts to then separate fatty
acid salts and the glycerol from the final mixture. During the
second half of the eighteenth century, the production of soaps
increased to become an important industrial scale operation
(Figure 1) (6). During the eighteenth and nineteenth centuries,
the understanding of biochemical properties and applications
of fats grew hand-in-hand with chemistry as a whole. Thus,
innovation and broader chemical knowledge gradually resulted
in the development of novel industrial applications and uses
for fatty acids and, consequently, the constant search for new
and varied sources of those in nature (2). It was then that men

Abbreviations: ACC1, Acetyl-CoA carboxylase; ADH, Alcohol dehydrogenase;
ALA, Alpha-linolenic acid; ARA, Arachidonic acid; BC, Before Christ;
DAG, Diacylglycerol; DGAT1, Diacylglycerol O-acyltransferase 1; DHA,
Docosahexaenoic acid; EPA, Eicosapentaenoic acid; FA, Fatty acid; FAEE,
Fatty acid ethyl ester; FAME, Fatty acid methyl ester; FAS I f, Fatty acid synthase
I; LA, Linoleic acid; MUFA, Monounsaturated fatty acid; OA, Oleic acid; PA,
Palmitic acid; PUFA, Polyunsaturated fatty acid; SA, Stearic acid; SAFA, Saturated
fatty acid; SCO, Single cell oil; TAG, Triacylglycerols; UV, Ultraviolet; VFA,
Volatile fatty acids; VLC-PUFA, Very long chain polyunsaturated fatty acids.

started hunting a very rich source of fats, an “industry of oils
at its day” as it was later defined: sperm whales (Figure 1) (7).
They were the largest toothed whales, known at the time for
their huge head filled entirely with a peculiar waxy substance
called spermaceti (7). This very precious oil comes from the
blubber and acoustic fat bodies, which we now know to be
essential for signal transmission in whales (8). The versatility
and the large quantities of the spermaceti oil were appealing
to the fats industry at the beginning of nineteenth century: the
liquid form was used to fuel lamps and the congealed form
was used for candles, soaps, and cosmetics (7). The whaling
industry saw a decline from 1880 until 1925, to then increase
again during the World War II: by the end of 1958, more than
20,000 spermwhales were killed every year, and their waxy oil was
used to produce cattle fodder, dog food, vitamins, supplements,
glue, leather preservatives, and brake fluids (Figure 1) (7). The
number of whales decreased so drastically that in 1982 whaling
was declared illegal. Since the start of whaling, the population
of sperm whales has decreased from around one million to just
few hundred thousand. This resulted in an incredible loss for
the marine ecosystem, because of the importance that whales
have in producing phytoplankton, which recycle CO2 from the
atmosphere (9).

Nowadays, the use of fatty acid sources has taken a turn
from the past: food, cosmetics, and pharmaceutical industries
are mainly interested in polyunsaturated fatty acids (PUFAs),
which have been shown to possess beneficial properties in
human health (10). Fatty acids have also been recently valued
as innovative and green source for production of biofuel and
feedstock (Figure 1) (11, 12). PUFAs are mainly produced by
marine phytoplankton and contained in fish and seafood, but
climate change has dramatically affected the marine ecosystem.
This is because of the high level of carbon dioxide emission
and ultraviolet (UV) irradiation, both of which have resulted
in a decrease in growth marine sources and reduced synthesis
of PUFAs (13). Vegetable oils cannot account for the current
shortfall, and the cost of microbial production is too high
(14, 15). Fish and vegetable oil sources are not adequate to
meet industrial needs, so research in this area has started
looking at the genetic modification of algae, bacteria, yeasts,
seeds, and plants as bioengineered factories to produce PUFAs
in a larger amount corresponding to the increased world
demand (16).
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THE DISCOVERY AND EARLY CHEMICAL
KNOWLEDGE OF FATTY ACID
MOLECULES

At the end of the eighteenth century, Antoine Lavoisier was the
first scientist to determine the elemental composition of fats and
oils. He established that fats and oils consist mainly of carbon and
hydrogen atoms; starch and sugars instead contain also oxygen
atoms; therefore, he considered the last ones as oxides of fats
(2). One of the most important figures in fatty acid chemistry
at the time was Michel-Eugene Chevreul, who brought great
development into the understanding of natural fats, when organic
chemistry was far behind the modern technologies we are used
to today. He started his investigation on animal fats, which led
to the first class of naturally occurring organic substances to be
chemically studied and understood. He was the first chemist able
to isolate a crystalline material with acidic properties by treating
soap obtained from animal fats with acid: a fatty acid molecule
(2). The first isolation of a fatty acid was followed by isolation
and studies of many other fatty acids from butyric to stearic.
He defined saponification as the chemical process by which
fatty acids and glycerol are obtained via a process described
as fixation of water and displacement of glycerol by alkali to
give fatty acids. Chevreul et al. (17) was also able to experiment
and introduce techniques for the isolation of fatty acids based
upon their fractional solubility in several solvents, multiple
crystallisations, and determination of their purity by measures of
melting points, introduced now for the first time (17). In 1854,
Marcellin Berthelot expanded the studies of Chevreul, focusing
on the synthesis of fats using glycerol and fatty acids (2). This
was the first time that an organic substance that does not occur in
nature was synthesised in a laboratory. Around the same time, the
first study on fatty acid metabolism was carried out by von Liebig
(18). This study was based on the idea that quantitative analysis
of organic molecules would give information on biochemical
transformation in nature, and therefore also in human body
through the addition and removal of food sources, gases, liquids,
and excretion products. He elaborated a general equation to
explain how sugars are converted to fats in the human body. This
equation put the foundation for studies of metabolic reactions
but did not confirm his theory that fats are formed solely
from sugars (2, 19). Later in the nineteenth century, Felix
Hoppe-Seyler discovered the phospholipid lecithin (2, 18), while
Johann Ludwig Wilhelm Thudichum described the chemical
composition of the brain fat as we still know it today (2, 11).
At the beginning of the twentieth century, fats were considered
a good source of energy and fat-soluble vitamins, but they were
not recognised to be essential because scientists believed that
they could all be synthesised from dietary carbohydrates (20).
In 1929, George and Mildred Burr reported a study in which
they showed that lack of dietary fatty acids led rats to develop
a deficiency disease, concluding that fatty acids are essential
nutrients (20). In particular, they confirmed that linoleic acid was
essential because its presence in the diet of rats would prevent
the disease. They later defined the concept of omega-3 linolenic
acid as another essential fatty acid analogous of linoleic acid.

These findings set a great change into the chemistry of lipids, and
they are considered a landmark for the lipidomic research until
today (20).

FATTY ACIDS IN THE TWENTY-FIRST
CENTURY: VALUE, PRODUCTION, AND
CONSUMPTION WORLDWIDE

How has the interest in fatty acids changed in the contemporary
time? Has it developed together with the modern society? If
so, how? From the advent of the industrial revolution until
the twentieth century, the yield and stability, and the quality
and form of fatty acid products were radically improved by the
introduction of new techniques for fat extraction, the process
of refrigeration, the addition of preservatives and antioxidants,
and by the hydrogenation of unsaturated fatty acids. These
aspects had a great impact on the evolution of fats industry
and market, and consequently on human usage. Saturated fats
became cheaper and easily accessible for the population in the
form of butter, shortenings, margarine, therefore increasing the
daily dietary intake of saturated fatty acids and changing radically
the western diet (21). With the change in human diet during
the contemporary era, modern diet has diverted from one very
rich with omega-3 PUFA and well-balanced ratio of omega-
6/omega-3 (1:1), to one rich with saturated fatty acids and
omega-6 instead of omega-3 (22). This unbalance has shown
to be harmful for human health and one of the possible causes
of chronic diseases (23). Therefore, the interest in increasing
the intake of PUFAs in the human diet has grown rapidly
in the food industry (24). Nowadays, fats and oils are largely
produced and consumed worldwide at different rates, relying
primarily on vegetable sources (24). The greater production is
driven by Asia, which accounted in 2018 for more than half
of the world global production of fats in the form of soybean,
canola, and palm oils (24). Asia is also the greatest consumer
of fats and oil in the world, led by China and India, and
the United States is second. Palm oil represents 30% of the
vegetable oil consumed followed by soybeans oil. Animal fats
still account for a large part of the total consumption, but
it has not seen an increase in recent years, staying steady,
because of health concerns leading toward higher consumption
of high-value and essential omega-3 PUFAs. Overall, the world
fat consumption for food usage is increasing to a rate of
around 3% every year, and the demand for biodiesel production
from fats and oils is also growing fast (24). The interest in
fats has changed and developed toward the so defined “food-
energy-water nexus”: fat chemistry and technology represent a
potential platform to highlight synergistic approaches in search
for new sources for the main components for food and energy
production based upon renewability, respect of the ecosystem,
and circular bioeconomy (25). This is certainly one of the
biggest challenges for science and industry of our time, of
which fatty acid chemistry and technology are a small but
exemplar showcase.
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FIGURE 2 | Heat map of the fatty acid content of the most used species of oil

producing plants. The information used to produce this graph has been taken

from https://lipidlibrary.aocs.org/chemistry/physics/plant-lipid/production-of-

unusual-fatty-acids-in-plants.

FATTY ACIDS IN PLANTS: FROM NATURAL
TO BIOENGINEERED SOURCES

Plants are rich in fatty acids such as palmitic (C16:0) (PA), stearic
(C18:0) (SA), oleic (18:1) (OA), and linoleic (18:2) (LA) acids,
which are found in different percentages from species to species
of oil plants (Figure 2). They are also considered one of the most
important sources of the omega-3 fatty acid, alphalinolenic acids
(18:3) (ALA), which is mostly stored in leaves and oleaginous
seeds. ALA is present in very high concentrations especially
in walnuts, flax seeds, and canola oils and leafy green plants
(26) (Figure 2). Vegetable oils and fats have always been the
primary sources, earlier through direct consumption, and later
through extraction processes, of these classes of fatty acids for
food applications.

Thus, plants have been considered a fundamental source to
synthesise ω-3PUFAs starting from ALA, in which plants are
very rich, to make eicosapentaenoic acid (C20:5) (EPA) and
docosahexaenoic acid (n3-C22:6) (DHA), by bioengineering of
plant metabolism (27). The very first modification to the fatty
acid synthesis in plant (around the 90s) was achieved via genetic
manipulation of the genes encoding for the enzymes involved in
the fatty acid synthetic pathway. Knowing that palmitic acid is
very abundant in oils of most of plants, one of the first strategies
resulted in increase in the catalytic activity of the enzyme that
elongates palmitic acid to stearic. Another method accounted
for the reduction of the activity of acyl-ACP thioesterase. The
final approach, still in use, consists of the increase in desaturases
activity (28). Proceeding with the investigation in this innovative
field, progress has been made with the use of heterologous

enzymes or newly produced enzymes expressed in plants, to try
and mimic the very long chain polyunsaturated fatty acid (VLC-
PUFA) synthesis thatmostly happens in seeds. This technique has
been largely implemented with use of PUFA synthetic enzymes
from bacteria, algae, and yeasts (29). Due to the complexity of
the biochemical process, many studies have been carried out
to reproduce the ability of microalgae enzymes by building an
enzymatic machinery able to synthesise VLC-PUFAs in oilseeds
in a more efficient manner (30). In this regard, one of the
studies that is worthmentioning is the co-overexpression of three
different desaturases: 19-desaturase from Isochrysis galbana
(haptophyte), 18-desaturase from Euglena gracilis (single-celled
alga), and 15-desaturase from Mortierella alpina (oleaginous
fungus) into Arabidopsis thaliana, also known as thale-cress: it
is easy to genetically manipulate because of its relatively small
genome and short life cycle. This approach led to the production
of EPA and arachidonic acid (ARA) in leaf tissues of plants in
very high amounts (31). One of the most common approaches
to make VLC-PUFAs is based upon the bioengineering of the
pathway that starts off with 16-desaturase, which introduces
a double bond in position 16 of the carbon chain of ALA or
LA, followed by elongation of two carbon units, and then by a
second process of desaturation by 15 desaturases, resulting in
the synthesis of ARA and DHA (32). This approach was proved
to be successful via the insertion of those genes fromMarchantia
polymorpha into tobacco plants (33). A significant achievement
in plant biotechnology for production of ω-3 VLC-PUFAs has
been reached by the bioengineering ofCamelina sativa, an oilseed
plant that is very cheap and easy to grow. The seeds of this plant
can normally produce up to 28% of ALA and 19% of LA, which
makes C. sativa a very good candidate for the synthesis of ω-
3 VLC-PUFAs (34). On those bases, C. sativa has been used to
introduce a transgenic 16-desaturase pathway to convert OA,
LA, and ALA into DHA and EPA (35). In particular, it was
possible to obtain a fish-like production of DHA by up to 12% by
a stable multi-gene construct design and the expression of 16-
desaturase, 16-elongase, and 15-elongase from both yeast and
microalgae, which showed to be very efficient and industrially
relevant in increasing the production ofω-3 VLC-PUFAs at lower
cost and higher yield (35). The amounts of VLC-PUFAs produced
using these genetic manipulations have been very promising and
have suggested that the use of transgenic plant could be one of the
most resourceful techniques to increase the production of PUFAs
required today (30).

Together with usual FAs from plants described previously,
some unusual fatty acid structures have been also found in
oilseeds: these can vary in length (short or long carbon chains)
and present various functional groups such as hydroxy, epoxy,
acetylenic, and cyclopropane. They have been found to have
a great potential for non-food industrial uses of fatty acids
because of their physical and chemical properties (36). One of
the examples is erucic acid (C22:1) produced in large amounts
in the seeds of Brassica napus and found to be the precursor
of erucamide, which is widely used in the production of plastic
films and nylon (37). Another example is lauric acid (C12:0),
primarily extracted from palm trees, whose surfactant properties
have found great applications in the soaps and detergent industry.
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The problem with these sources is the high cost of production,
which could have not overcome the same disadvantages linked to
the current use of petroleum sources for production of plastics
(28). Thus, once more, genetic manipulation became the key
attempt to engineer the production of lauric acid into domestic
crops, particularly via the overexpression of ACP-thioesterase
enzymes, in order to interrupt the elongation of 12 carbon chain
fatty acids. An experiment has been successful on Umbellularia
californica, a bay tree indigenous in California, and also on
Arabidopsis plants (38). This genetic manipulation has allowed
the increase in production of lauric acid over 40%, providing
a more sustainable alternative source to imported oilseeds and
petroleum derivatives (28).

Furthermore, it is important to highlight at this point
the potential that bioengineered plants have as an alternative,
sustainable and renewable source for energy and chemical
feedstocks for oil industry compared with the traditional oil
refining. An alternative to produce cost-effective biofuel from
plants, it is to avoid the use of virgin oil trees, which are very
expensive, and instead prefer their waste feedstock or their used
oils (such as used cooking oil). Furthermore, the optimization in
the separation of free fatty acids, which are the starting material
to obtain biodiesel, from glycerol, water, and acid or base catalyst
eventually used it is very important. This could significantly
reduce the presence of contaminants and formation of foam
or emulsions, therefore increasing the yield and purity of the
final product (39, 40). In order to achieve this goal, lipases and
phosphatases have been recently discovered to be particularly
efficient. The use of these two enzymes’ activities combined
and the possibility of those to be immobilised for potential
large-scale biofuel production have shown great results in term
of yield: phospholipase C hydrolyses phospholipids to release
DAG, while other phospholipases and lipase, i.e., A1, A2, and B,
hydrolyse the acyl groups from various lipid classes, facilitating
transesterification reactions to obtain fatty acids methyl esters
(FAMEs), which are the main constituent of biofuels (41).
Compared with chemical approaches, the biocatalytic one gives
a higher level of FAMEs without the use of excessive amounts of
methanol, exclusively because of the kinetics and stereoselective
properties of these enzymatic reactions (39). Biorefining, unlike
a typical petrochemical refining process, is not based on a
diminishing starting material but has the potential to be
totally renewable and sustainable: solar energy capture, products
diversity, harvesting, replantation of oilseeds, biomass waste
conversion, and the use of enzymatic tools to purify the final
products are the driving force for a new and sustainable source
of fatty acids and biofuels entirely based upon bioeconomy (42).

MARINE BIOME AND MICROALGAE ARE
VERY EFFICIENT FATTY ACIDS
BIO-FACTORIES

Until recently, fish has been considered one of the most
valuable sources of fats and oils, especially for food applications,
production of enriched fatty acid products and animal feedstocks
(43). Fish and other marine sources, particularly salmons,

mackerels, and mullets, which are rich in EPA and DHA, have
been largely depleted, with a high risk to disappear within few
years (44). Different studies have shown controversial results in
terms of amounts and class of fatty acids present in farmed and
wild fish when comparing the respective lipid profiles. The ratio
between ω-3 and ω-6 fatty acids seems to vary from one species
to another and according to the composition of fish feeds (45).
Particularly, research on sea bass lipid content has shown how
the farmed fish exhibits a higher level of omega-6 LA and a
consequent decrease in theω-3/ω-6 ratio compared with the wild
fish, where the ratio has been found to be considerably higher
(45). This effect has been attributed to a large amount of ω-
6 fatty acids contained in fish feeds, which are in fact rich in
terrestrial plant oils. Surprisingly, the opposite has been shown
in another study between wild and farmed salmons, where the
wild species seems to have a lower content of ω-3 instead despite
having a much larger variety of food directly available from their
native habitat (46). Another aspect that has to be considered is
the amount of heavy metals and other contaminants that can be
found in fish and marine sources extracts, which do not meet
the health and nutritional security standards (47, 48). Fish and
fish oils are, in fact, one of the primary sources of exposure to
certain contaminants such as methylmercury, demonstrated to
be highly neurotoxic, polychlorinated biphenyls, and many other
persistent halogenated organic pollutants, whose content seems
to be similar between farmed and wild fish (49). The problem
related to the balance between the health benefit derived from
the high value fatty acids pull and the level of toxic substances
generates concerns around the usage of fish as primary source
of fats (49). Furthermore, the constant increase in human
population and in demand of food and energy sources, fish, and
other marine sources clearly do not represent the mean to satisfy
the current world supply of fatty acids (50). For all these reasons,
fishing and, in particular, overfishing have been declining since
1980, and the interest in new sources from deep and shallow
sea water has been growing (47, 51). For a long time, the focus
on the study of lipid sources has been limited to deep water
organisms such as fish, crustaceous, corals, and zooplankton,
which are very rich in phospholipids, triacylglycerols, wax esters,
and sterols, and therefore of the desired fatty acid building blocks.
Marine microbiome is one of the richest sources of fatty acids
and particularly of essential ω-3 PUFAs, such as EPA and DHA,
which have been already mentioned in the previous paragraphs
for their properties in human health (52) (Figure 3). Particularly,
microalgae have one of the highest oil content, between 10 and
50%, and they are able to produce up to 30–70% of total lipid
mass, with a very high percentage of this being EPA and DHA
(54) (Figure 3).

These organisms are able to accumulate fatty acids for energy
storage to be used for all their metabolic functions (54). In
fact, microalgae vary the synthesis of different amounts of
endogenous PUFAs and other metabolites via an adaptation
process in response to altered levels of sea depth, temperature,
UV light, and oxygen and carbon dioxide levels. This remarkable
environmental response shows to be a promising opportunity
to modulate, on demand, the amount of specific classes of
fatty acids required while maintaining the equilibrium of the
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FIGURE 3 | The bar chart shows the amounts of EPA and DHA produced in

microalgae and compared with omega-3 oil rich fish and transgenic soybean

plants. Data taken from Amjad Khan et al. (27) and Adarme-Vega et al. (53).

aquatic environment in a very finely regulated manner (53).
One example of this extraordinary ability has been proved by
the 2-fold increase in total lipids mass, obtained, respectively,
in Phaeodactylum tricornutum (55), Nannochloropsis spp.(56),
and Dunaliella spp. (57) by changing light intensity, salt
concentration, and temperature. ω-3 fatty acid biosynthesis
has also been modulated, determining an increase in EPA
production of around 10%, at lower culturing temperature
both in Pavlova lutheri (58) and Phaeodactylum tricornutum
(59). More recently, genetic manipulation and transcriptional
engineering have found a space in order to optimise the synthesis
of high value fatty acid products from microalgae (60). In
fact, according to their degree of unsaturation, microalgae oil
content can be used for food supplements and pharmaceuticals
or biofuels production. Therefore, a genetically modified and
tuneable system showed to be a promising approach to improve
the production of a desired degree of unsaturation in the final
product, determining higher fatty acid diversity and efficient
producing process (61). A way of implementing the amount
of fatty acids has been exploited by slowing and reducing the
process of fatty acids degradation by lowering the expression
level of beta-oxidase genes and consequently their activity.
Another example consists of the overexpression of elongases
and desaturases, which have shown the possibility to tune and
enhance the production of ω-3 VLC-PUFAs. A remarkable
example of this approach is the overexpression of the elongase
ELOVL5 in Phaeodactylum tricornutum, which resulted in a
much higher percentage of DHA and EPA as final products.
Moreover, it established the potential for a large-scale production
of PUFAs from microalgae at industrial level (62). An analogous
approach has been applied to the production of biofuels. In order
to obtain fast-growing and oil-rich microalgae biomass, malic
enzyme, involved in pyruvate metabolism and carbon fixation,
from Phaeodactylum tricornutum has been overexpressed. This
genetic modification determined an increase in the amount of
neutral lipid of 2.5-fold and of 60% compared with the wild
type. Thus, it suggested a potential new path for developing
specifically designed microalgae strains to improve and facilitate

FIGURE 4 | The cartoon is a schematic representation of the algae

aquaculture bioprocess and of different products that can be obtained by fatty

acid-rich biomasses.

the production of biofuel (63). Microalgae are also widely used as
enriched feed stock source for aquaculture and animal farming.
In fact, the products obtained from microalgae biomasses, either
fresh or dried, are used as fatty acid-enriched source directly
for livestock (Figure 4) (53). In this way, the use of omega-
3 enriched microalgae biomass has been largely applied to
indirectly increase the human consumption of essential PUFAs
(43). In fact, the use of those as supplement to faming animals
feed has resulted in increased concentration of EPA and DHA in
milk, eggs, and meat, which are then addressed to human diet
(64–66).

Furthermore, the microalgae biomass can be highly purified
to obtain pure chemicals for pharmaceutical applications,
such as the production of ω-3 food supplements (Figure 4).
In fact, due to the benefit that humans are able to gain
from a diet rich in EPA and DHA, and the fact the
microalgae are the largest bio-producers of those, the products
from refined biomasses have claimed a great role in many
medical applications, such as for inflammatory chronic disease,
allergies, cardiovascular disease, and neurological diseases
among others. Recently, they have found an application in
drug delivery as well: their very low cytotoxicity and high
lipophilicity make them able to be used as a medium to
facilitate the crossing of cell membranes of many active
principles (67).

The flexibility and adaptability of microalgae and the fact that
they are relatively easy to grow and genetically manipulate have
defined these marine microorganisms as excellent bio-factories
for valuable fatty acid products and by-products on the whole
(Figure 4) (53, 61).
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FIGURE 5 | Schematic representation of the mechanism of production and

utilisation of fatty acids and lipids produced by oleaginous microorganism

using cost-effective carbon sources.

OLEAGINOUS MICROORGANISMS AND
THEIR RESOURCEFUL LIPID STORAGE
SYSTEM

Some microorganisms, such as filamentous fungi, yeast, some
microalgae, and some bacteria, are defined as an oleaginous
microorganism because of their remarkable ability of storing
intracellular lipids into lipid droplets, known as single cell oils
(SCO), which are particularly rich in triacylglycerol (68). The
level of lipids accumulated is usually between 20 and 80% on
the total cell biomass, and it can vary according to culturing
conditions as much as the fatty acid profile on the whole (68).
The large amount of lipids produced and the diversity of fatty
acid molecules that can be obtained through the production
of SCOs are becoming more and more attractive in terms of
finding alternative sources of fatty acids. They have been shown
to be an advantageous alternative to plants, animals and fish oils
and fats, especially for biodiesel production and for some ω-3
PUFA products (Figure 5). In fact, oleaginous microorganism
cultures, compared with plant cultivation, animal farming, and
aquaculture, do not depend on location, climate, seasons, and
space. Moreover, they are able to use various carbon sources,
from food industry waste to renewable carbon sources (54, 69).

Unlike other non-oleaginous microorganisms in the same
conditions, in the presence of an excess of carbon and a lack of
nitrogen, their growth rate is not slowed or stopped. Instead, their
metabolic response decreases their total biomass and increases
their lipid production (70). Many studies have shown that it is
possible to reach a higher level of SCOs using very cheap carbon
sources or industrial by-products, such as glycerol, commercial
sugars, and plant and lignin materials (Table 1). The use of this
approach proved that yeasts are able to accumulate up to 22%
(w/w) of lipids and fungi up to 43% (w/w). Very successful
is the application of even cheaper carbon sources from plant
wastes, such as orange and tomato peels, obtaining a total lipid

TABLE 1 | The table shows few examples of some oleaginous microorganism

cultures supplemented with cheap and waste feedstock carbon sources and the

relative amount of lipids obtained.

Oleaginous microorganism Carbon source Lipid content

(w/w, %)

C. vulgaris NIES-227 Glucose, low nitrogen 89

Auxenochiorella prototheconides Birch biomass 66

Rhodosporidium kratochvilovae Clarified butter sediment waste 70.74

Cryptococcus curvatus Waste cooking oil 70

Rhodococcus opacus PD630 Biomass gasification 66

Gordonia sp. DG Sunflower oil 52

Data are selection of the highest lipid contents reported for some microorganism and

collected in Patel et al. (71).

amount >50% in various oleaginous microorganism (72–74).
Particularly, the oleaginous fungi Cunninghamella echinulata
produced 46.6% of total lipids, such as 14% of gamma linolenic
acid (75).

Another great advantage of this cost-effective source of fatty
acids is that they can be cultured under solid state fermentation,
obtaining an even higher productivity of SCOs with lower cost
for media usage, and low energy and water consumption. The
use of this sustainable carbon sources allowed the synthesis of
high levels of PUFAs at lower cost, such as in Mortierella sp.
(76). Particularly, ARA was produced up to 70% by M. alpina,
whereasM. hyalina andM. elongatamade up to 23% of ARA and
higher concentration of oleic acid (77). The production PUFAs
from oleaginousmicroorganism has found important application
in food industry for food supplementation (78). One of the
first oil obtained from Mucor circinelloides was commercialised
in the 1980s as an alternative source of gamma-linolenic acid
(GLA) from oil seeds (79). In the 1960s, oils rich in ARA
started to be introduced in food industry and cosmetics. ARA
and DHA rich SCOs obtained from M. alpina and Pythium
sp. showed the highest yield obtained with this technique, and
from 1985 were launched in the market for infant formulas
such as milk, reaching a very high level of consumption around
2010 (80). Despite being a promising source of PUFAs, SCOs
production has not found the predicted wide usage especially
in food and pharmaceutical industry. There are, in fact, some
disadvantages in the scale-up process and products recovery of
SCOs (81). The complex procedure of extraction often requires
application of toxic solvents, which is not allowed in food
industry (82). On the other hand, the potential and applicability
for biodiesel and oleochemicals seem more promising and
advantageous (68). Oleaginous microorganism cultures have
short life cycle, account for adaptability and independence from
external factors; therefore, they have the potential to be applied
for large-scale industrial production of biofuel, with reduced
impact on energy consumption and exhaustion of soil (83).
Aspergillus niger cultivated on sugar cane waste from distillery
has been shown to be resourceful to produce biofuels from
low-cost waste feedstocks (84). Although this approach looks
promising and sustainable, there are still very high cost of
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downstream extraction and refining, that inevitably counteract
with the relatively cheaper one used for plant and animal
sources (85). Moreover, SCOs are also studied as potential
source of oleochemicals such as fatty acids, fatty alcohols,
and fatty acid methyl and ethyl esters as substitutes of the
ones synthesised from petrochemical feedstock (86). Together
with various supplementation approaches and vary cultivation
techniques, a big improvement is given by the use ofmetabolomic
and genetic tools such as overexpression and knock-down of
specific genes that have a fundamental role in the lipids and fatty
acids metabolisms (71). This approach has allowed a tuneable,
selective and larger synthesis of endogenous lipids in Yarrowia
lipolytica: the co-overexpression of the two key genes encoding
foracetyl-CoA carboxylase (ACC1) and diacylglycerol O-acyl
transferase 1 (DGAT1) led to a 5-fold increase in total lipids
content (87). This oleaginous yeast has been considered one
of the most promising platforms for metabolic engineering of
FAs metabolism, followed by others such as Lipomyces starkeyi,
Cryptococcus curvatus, and Thriosporum pullulans, which still
need a more extensive study of metabolic pathways and genomic
tools to design efficient cell factories (88).

Oleaginous microorganisms have shown an undoubted great
potential to be green, sustainable, and genetically tuneable
sources of fats, but the high cost estimated to grow large scale
cultures still raises concerns about this being amore cost-effective
process compared with the classic approaches. However, the
utilisation of renewable carbon sources derived from wastes can
partially reduce the problem. Furthermore, the introduction of
those as alternative sources of biofuel helps to lower the overall
production costs, as well as getting ω-3 PUFAs from more
sustainable sources, without further depleting the already affected
marine ecosystem (71).

BIOTECHNOLOGICAL ADVANCES,
SYNTHETIC BIOLOGY, AND
MATHEMATICAL MODELLING TO BUILD A
CELL FACTORY FOR HIGH VALUE FATTY
ACIDS PRODUCTS

Chemical biology and metabolic engineering represent the new
frontier to improve the productivity of a broad range of
organisms in order to find the most efficient way to overcome
the shortage of FAs sources and to specifically tune the synthesis
of certain species rather than others (86). This approach has also
shown to be able to overcome a series of disadvantages derived
from the usage of natural sources of fats, i.e., fish and plants, as
well as the often non-economically viable and time-consuming
chemical processes of FA derivatives total synthesis or extractions
from microorganisms (89). Today, this approach is led by broad
knowledge around synthetic enzymatic pathways of FAs, PUFAs,
and FA derivatives (FA alka(e)nes, FA alcohols, FAMEs, and fatty
acid ethyl esters (FAEEs) and by a wide variety of biochemical
and genetic tools that researchers have available to design cell
factories to produce high value fatty acid products (90). The idea
is based upon reconstruction of the FA biochemical pathway
through a fine regulation and manipulation of gene expression,

through deletion, overexpression, or lower expression of one or
multiple genes that encodes for key enzymes, which ultimately
results in a highly controlled phenotype, and therefore in
effective production of the desired metabolic products (71).
Genomics, metabolomics, transcriptomics, proteomics, high-
throughput screening, and computational studies have been
largely applied to predict and optimise the design of the cell
factories in order to achieve the best result possible (71, 86).
As discussed before, different types of microorganism are able
to produce and accumulate fatty acids and their derivatives,
so how do researchers choose their cell factories? In order to
maximise the efficiency of a modified system for production of
fatty acids, it is fundamental to choose a microorganism that
is widely studied and used in metabolic engineering. Therefore,
the heterologous systems of choice are usually S. cerevisiae,
E. coli, and few others: they have a high bio-safety score, they
are easier to generically manipulate, they are fast and cheap
to grow at high cell density, they rapidly adapt to different
conditions (temperature, pH, carbon sources, etc.), and therefore
they have been considered industrially relevant and viable (91,
92). Many studies have been carried out to prove that it is possible
to increase and facilitate the otherwise complex and, in some
cases, expensive production of FAs (93). The first step in this
process consists of the identification of sequences of genes that
encode for enzymes that have a primary role in the FA synthetic
pathway and that are very efficient in certain microorganisms
(93) (Figure 6). These genetic sequences are then cloned or
de novo synthesised to be finally introduced via recombination
processes, with potential codon optimisation and/or targeted
genetic mutations into the DNA of an heterologous system (93)
(Figure 6). At this point, the engineered host microorganisms are
able to start a process of transcription, which can be alsomodified
to control the level of genetic expression via inducible promoters
and terminators, and the level of RNA, controlling its folding
and degradation through biological sensors, in the heterologous
system: this dynamic and fine control of the transcription process
has shown to be an excellent tool to improve the yield of FA
products and to be particularly useful in the production of
biofuels (94, 95) (Figure 6). At this point, once transcription is
completed, translational engineering tools can be used to vary
the yield of the enzyme produced and to lower its degradation
and also the speed at which it is synthesised (93) (Figure 6).
Post-translational modifications (glycosylation, phosphorylation,
methylation, acetylation, ubiquitination, proteolysis) of the
enzyme are applied to improve the affinity of the active site for
the substrate and therefore the final FA product yield. In order to
avoid cell toxicity, the control and the improvement of the level
of tolerance for the intermediates and for the high level of the
final fatty acid products is important (93) (Figure 6). The very
final step is based on engineered systems for the efflux of fatty
acids from the cell. This is a very new tool which is still under
investigation (93) (Figure 6).

Following this complex and fine approach, many different
high value fatty acid products have been obtained in high yield
in both E. coli and S. cerevisiae. A great example of designing
and engineering an FA biosynthetic pathway, which takes in
account the tolerance and toxic effect of the overproduction of
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FIGURE 6 | The cartoon represents the most important step of the bioengineering process of cell factory to produce high valuable fatty acid products. This has been

adapted from Yu et al. (93).

the final metabolite, is the synthesis of gamma-hydroxy fatty
acids (96). This class of molecules is of great interest, because
they give long carbon chain monomers that can be used in
the synthesis of polymer materials and as building blocks or
intermediates in chemical, pharmaceutical, and food industries
(96). In this study, E. coli has been chosen as heterologous
system for the expression of an alcohol dehydrogenase (ADH)
from Micrococcus luteus, a monooxygenase (BMVO) from
Pseudomonas putida KT2440, and an esterase (PFE1) from
Pseudomonas fluorescens. This engineered biosynthetic cascade
produced gamma-HUA at a productivity of 3.2 mM/h and more
than 80% yield (96). E. coli has also been used successfully
to produce biofuel as an alternative to the transesterification
of triacylglycerols (TAGs) extracted prevalently from oil plant
seeds (97). This study showed a scalable and sustainable de novo
biosynthesis of FAEEs from glucose, obtained from lignocellulose
biomass, into a genetically modified E.coli to exploit the ethanol-
producing pathway from Zymomonas mobilis, to increase the
fatty acyl-CoA pool and the heterologous expression of acyl-
CoA:diacylglycerol acyltransferase from Acinetobacter baylyi
(97). The total amount of FAEEs (particularly ethyl palmitate,
oleate, myristate, and palmitoleate) reached a level of 922 mg/L
(97). An approach that seems to provide a good, sustainable,
and stable strategy for a large-scale production of VLC-FA-
derived chemicals has been presented in a study that used
S. cerevisiae as heterologous system (98). This engineered
platform has been designed to express the fatty acid synthase
I (FAS I) from Mycobacterium vaccae and a specific fatty acid
reductase (C22), obtaining selectively 83.5 mg/ of docosanol,
which is very useful for chemical and biofuel production (98).
Looking at the synthesis of essential FAs, a great majority
of microorganisms have a low capacity to metabolise and
accumulate PUFAs and especially omega-3 and omega-6 in
their cell systems. Therefore, these biotechnological advances
and genetic manipulations have been applied to tune PUFA
production by the construction of an effective and now

widely used synthetic metabolic pathway. An example is the
heterologous expression of desaturases and elongases from
different oleaginous microbes for production of industrially
relevant ω-3 and ω-6 PUFAs by up to 35% in the fungus Ashbya
gossypii (99).

In another recent study, the polyketide synthase-like PUFA
fromMycobacteriawas reconstructed inY. lipolytica, overcoming
the traditional system of elongases and desaturases normally
preferred, and resulting in a highly enriched lipid profile with
a promisingly high yield of PUFAs (100). These are only
few examples of a very innovative platform of investigations
on alternative and sustainable sources of fatty acids, which
has shown to be very promising. It suggested that metabolic
engineering of FA metabolism at different levels and the use of
biotechnology could be one of the best approaches to increase
the amounts of available FAs. Alongside this, synthetic biology
has been shown to offer very attractive and promising roots to
design novel biological cell factories to increase fatty acid and
oil production (101). In fact, it has been possible to reproduce
exact biological behaviour and metabolic pathway for fatty acid
and lipid synthesis with high fidelity by assembling the natural
components of a specific cell system (such as proteins, enzymes,
and organelles) and chemically synthesised molecules to mimic
substrates and products (102). In order to enable an optimised
reconstruction of these extremely complex biocatalytic systems,
computational, and mathematical modelling have been widely
and successfully introduced in synthetic biology (101). The
in silico mathematical simulations and calculations represent
powerful tools to predict the dynamics of ametabolic cascade and
to search a very large space of physical and chemical parameters,
aiming to exclude unfavourable conditions and promote an
ideal environment, finally achieving the desired response into
a bioengineered system (103). One of the most representative
examples of the use of this method is the production of biofuels
and oleochemicals feedstocks from oleaginous microorganisms
(104). In particular, scientists have been able to provide a
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FIGURE 7 | The cartoon is a representation of the use of organic waste in the biorefinery process to obtain valuable products in a sustainable and environmentally

friendly manner.

system-level view from a large range of these organisms by
bringing together top-down and bottom-up approaches (104).
The first one is based on genomics, metabolomics, proteomics,
and transcriptomics high-throughput screening and accurate
data collection from the SCO cellular environment (105, 106).
The second one relies on mathematical predictive models, which
are developed on pre-existing knowledge around SCOs, in order
to perform a systematic analysis of the cellular environment
during the biochemical switch from lipogenesis and lipid
accumulation (107, 108). These two methods have successfully
given a full understanding of lipogenesis in SCOs by highlighting
a similar metabolic pattern across all microorganism studied, and
by finally leading to the identification of key regulatory hotspots
such as glucose-6-phosphate dehydrogenase (G6PDH) (109), 6-
phosphogluconate dehydrogenase, malic enzyme (ME) (110),
andATP citrate lyase (ACL) (110), which are all promising targets
for bioengineering the synthesis of lipids, in order to obtain an
optimal amount of lipid for oleochemical production (108, 111).

THE ROLE OF FATTY ACIDS IN
BIOREFINERY: THE CHALLENGE OF
ENVIRONMENTAL IMPACT AND
CIRCULAR ECONOMY

The economic, social, and technological development of the
modern society has come into place together with corresponding
very high consumption and demand of both renewable and non-
renewable resources. The immediate consequence is an acute

impact on the environment in terms of waste of resources at the
“end of their life,” pollution, and global temperature warming
(112). As discussed throughout this review, the production of
FAs can be considered as an emblematic example of scientific
effort to maximise the yield and conversion of FA building
blocks into high value products by embracing a more sustainable
and environmentally friendly use of resources (113). At this
regard, FAs, and, in particular, volatile fatty acids (VFAs), have
gained an important role in the emergent concept of biorefinery
(Figure 7) (114). This innovative approach is entirely based
on the usage of organic wastes, such as food and landfill
wastes, and other renewable sources, such as animal feedstock,
farm biomasses, and industrial waters, in order to produce an
added high value, biopolymers, biogases, and biofuels (Figure 7)
(115). The recovery of waste resources, which would otherwise
be disposed of via incineration, with consequent emission of
high level of toxic greenhouse gases and chemicals, would
allow the capture and reutilisation of carbon sources in a
more efficient manner (Figure 7) (116). Moreover, this approach
would offer the chance to replace fossil fuels, which are largely
used today (116). The production of VFAs is an outstanding
example of how sustainable approaches and biotechnologies can
be applied in large-scale production to obtain raw materials
by recycling organic wastes in a very effective way (Figure 7)
(117). These compounds have a great value in chemical
industries, because they can be applied as substrates for biofuels,
such as methane and hydrogen, and for biopolymers, such
as polyhydroxyalkanoates (PHA) and biodegradable plastics
(Figure 7) (114, 118). In order to obtain VFA building blocks,
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feedstock, food, and landfill wastes are used as alternative and
rich sources of organic matter, containing high levels of C, N,
and P (119, 120). Thus, the classic oxidation and carboxylation
of aldehydes and alkenes obtained from fossil fuels could be
replaced by biofermentation techniques. This biotechnological
approach relies on mixed anaerobic bacterial cultures and their
various metabolic pathways, which depend only on proteins,
carbohydrates, and lipids as macromolecular substrates (121,
122). Therefore, from the fermentative breakdown of a complex
waste organic matter, it is possible to obtain amino acids,
sugars, FAs, and glycerol, which are then transformed through
acidogenesis into VFAs and other fermentation products,
to finally give hydrogen and carbon dioxide, which can
be further used in polymerization processes, and methane
(Figure 7) (123). The entire biorefinery cascade shows to be
an efficient and powerful system to yield various building
blocks for biodegradable plastic-like materials and biogases
(Figure 7) (114). Thus, it has the potential to drive industry of
plastic on an alternative route by favouring the production of
biodegradable materials at the expense of petroleum derivatives
(124). Moreover, the rich pool of biogases, such as hydrogen
and methane, obtained during biofermentation, accounts for
all the requirements to be alternative, sustainable, renewable,
and low-cost sources of energy: the fuels of the future,
as they have been recently defined, can become the most
valid alternatives to fossil fuels as source of bioenergy for
households, cars, and industries (Figure 7) (125). The utilisation
of agricultural waste, industrial waste, and municipal organic
waste to obtain FA building blocks and high-value derivatives,
is just one of the many examples that the modern and
industrialised world should take into consideration to help to
slow down and reduce global warming and overall climate change
(Figure 7).

Undoubtedly, the approach proposed for alternative FA
production has accepted the challenge proposed by the new
model of circular bioeconomy: recycling and reuse are the
foundations for designing and optimising various production
streams, while still promoting economic growth, but with
the advantage of reduced environmental impacts (126, 127).
Nevertheless, this new approach is still suffering from some
limitations, such as assigned budgets, infrastructure adequacy,
improper treatment of waste resources, in both developed and
developing countries (128). Inevitably, the adaption to this
bioeconomic productive system comes out with costs, and many
questions have been raised especially around the extensive use
of land required (129). Notwithstanding the impressive steps
forward made by the previously discussed biotechnologies in
the field for production of high-value chemicals, such as FAs,
there is still a large slice of the production that relies totally on
use of considerable amount of farmland for crops and feedstock
productions (130). This disadvantage brings up a fundamental
ethical debate: is it acceptable to exploit land that could be
used to increase the production of various indispensable food
resources for many developing countries, almost exclusively
for industrial purposes? How can the concept of circular
bioeconomy meet this essential requirement while trying to
overcome global environmental impacts? Unfortunately, the

questions have not been answered yet, and they have highlighted
one of the greatest contemporary scientific and socio-economic
challenges of history, not only for the FA industry: finding
a new production strategy that allows social, economic, and
environmental planet health at the same time. One of the
possible ways forward into this challenging but also inspiring
path is to propose a multidisciplinary, low-cost, and sustainable
approach that allows broad knowledge of different fields to
come together for the same aim, increasing the chances of
successful discovery.

CONCLUSION AND FUTURE
PERSPECTIVE

Fatty acids are one of the major constituents of all organisms,
and they play essential structural and functional roles for the
biology of cells. As it has been underlined in this review,
FAs and their derivatives have extended values that go beyond
their biological properties: they are building blocks for a large
variety of chemicals that can be applied as high value starting
materials in various industrial fields such as food, feedstocks,
pharmaceuticals, cosmetics, biorefineries, plastics, oleochemicals,
and many others. It is also clear that PUFAs are essential
for human health and for prevention of chronic diseases.
The biggest issue encountered so far is obtaining a sufficient
level of FAs and PUFAs in order to meet the continuously
increasing world demand for those, taking into account the
modern world challenge of looking for sustainable, renewable,
and cost-effective sources. Much progress has been made in
terms of reinventing and rethinking the way in which fatty
acids sources are identified and used. Nowadays, in fact, with
the advent of green chemistry, climate change, protection of
the environment, and bio economy, scientists have been looking
into alternative ways of obtaining FAs in large amount, without
damaging the marine ecosystem and vegetation. It has been
indeed a challenge, which has seen the discovery of many
bio-technological advances along with broader knowledge of
the metabolism of PUFAs and FAs and their derivatives in a
wide number of organisms such as microalgae, yeast, fungi,
bacteria, and plants. Microorganisms are shown to be remarkable
producers of fats: chemical biology investigation, and genetic and
metabolic engineering have become very advanced and efficient
tools for researchers to obtain a high yield of fats and lipids.
The approach to this innovative method has been also allowed
by exploiting the advantageous fast growth, adaptability, and
allowance for genetic manipulation of these microorganisms.
Thus, a new path to obtain highly sought-after/high-value FAs
has been marked with a renewable, green, and low-cost aspect:
design of metabolic engineered cell factories is the way forward
to overcome the lack of FAs, to improve not only the yield and
chemical variety but also the potential for large-scale production.
This is just the beginning of a very promising and even more
advanced strategy that fatty acid biotechnology will see in the
near future. In order to achieve this goal, more scientific efforts
are required to reach the widespread applicability of this newest
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methodology that will eventually enter industrial production and
finally commercialisation.
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