13 research outputs found

    Liver X receptors as modulators of plasmacytoid dentritic cell functions and thier leukemic counterpart

    No full text
    Chaque cadre doit contenir un résumé de 1700 caractères maximum, espaces compris. En cas de dépassement, la coupure sera automatique. Le doctorant adresse son texte sous forme électronique selon les recommandations de la bibliothèqueLes "Liver X receptors " (LXR) sont des récepteurs nucléaires impliqués dans Phoméostasie du cholestérol. Dans les macrophages, la stimulation de la voie LXR accroît la clairance des corps apoptotiques et réprime la réponse inflammatoire. Les LXR inhibent également la prolifération et la survie de cellules malignes.L'activation des LXR dans les cellules dendritiques plasmocytoïdes (PDG) augmentent la clairance des microparticules (MP), via l'induction du récepteur au phosphatidylsérines BAIL L'internalisation des MP active la voie NF-KB ou la voie LXR pour des MP dérivées respectivement, de cellules endothéliales (EMP) ou plaquettaires (PMP). Ces deux voies de signalisation se réprimaient mutuellement, déterminant la réponse inflammatoire des PDG.La contrepartie leucémique des PDC (LPDC) est à l'origine d'une leucémie aiguë agressive, la BPDCN. Nous avons observé une dérégulation de Phoméostasie du cholestérol dans ces cellules. L'activation de la voie LXR entraine un efflux du cholestérol associé à un effet cytotoxique et antiprolifératif. Ils peuvent impliquer : la répression de NF-KB ; ainsi que l'inhibition de la signalisation induite par le facteur de survie IL-3 (incluant STAT5 et Akt). L'utilisation d'un modèle xénogénique murin de BPDCN traitée par agoniste LXR montre une diminution de la cytopénie induite par les LPDC et des infiltrats spléniques et médullaires.Ces travaux démontrent la fonctionnalité de la voie LXR dans les PDC et LPDC, ainsi qu'une régulation croisée avec NF-KB. L'activation de cette voie a démontré son implication dans la clairance des MP et la régulation de la réponse inflammatoire des PDC, ainsi qu'un effet anti-leucémique sur les LPDC.Nuclear Liver X Receptors (LXR) are involved in cholesterol homeostasis. In macrophages, LXR promote apoptotic body/cell clearance and repress inflammatory responses. LXR are also shown to inhibit proliferation and survival of malignant cells.In plasmacytoid dendritic cells (PDC), LXR stimulation increases microparticle (MP) engulfment via the increased expression of the PS receptor, BAIL MP engulfment induced NF-icB or LXR activation, depending on the endothelial (EMP) or platelet (PMP) origin of MP, respectively. Overall, we show a crosstalk involving LXR and NF-KB, which dictates the inflammatory fate of PDC engulfing MP.The leukemic PDC counterpart (LPDC) is responsible of an aggressive hematologic malignancy, called blastic plasmacytoid dendritic cell neoplasm (BPDCN). In contrast to healthy PDC and other acute leukemias (including lymphoid and myeloid acute leukemias), we report here a specific downregulation of cholesterol homeostasis-related genes in LPDC. LXR pathway activation increases cholesterol efflux and inhibits cell proliferation and survival. This may involve: inhibition of NF-KB signaling pathway and of signaling pathways induced by the survival factor IL-3 (involving Akt and STAT5). Using a xenogeneic mouse model of BPDCN, LXR agonist treatment reduces BPDCN-induced cytopenia as well as bone marrow and spleen LPDC infiltration.Overall, we demonstrate that LXR receptors are functional in PDC and LPDC and are involved in a cross-regulation mechanism with NF-KB. LXR receptors promote MP clearance and control inflammatory responses in PDC, as well as exert an anti-leukemic therapeutic effect in BPDCN via several mechanisms, including cholesterol efflux

    Les "Liver X Receptors" : modulateurs des fonctions des cellules dendritiques plasmocytoïdes et leur contrepartie leucémique

    No full text
    Nuclear Liver X Receptors (LXR) are involved in cholesterol homeostasis. In macrophages, LXR promote apoptotic body/cell clearance and repress inflammatory responses. LXR are also shown to inhibit proliferation and survival of malignant cells.In plasmacytoid dendritic cells (PDC), LXR stimulation increases microparticle (MP) engulfment via the increased expression of the PS receptor, BAIL MP engulfment induced NF-icB or LXR activation, depending on the endothelial (EMP) or platelet (PMP) origin of MP, respectively. Overall, we show a crosstalk involving LXR and NF-KB, which dictates the inflammatory fate of PDC engulfing MP.The leukemic PDC counterpart (LPDC) is responsible of an aggressive hematologic malignancy, called blastic plasmacytoid dendritic cell neoplasm (BPDCN). In contrast to healthy PDC and other acute leukemias (including lymphoid and myeloid acute leukemias), we report here a specific downregulation of cholesterol homeostasis-related genes in LPDC. LXR pathway activation increases cholesterol efflux and inhibits cell proliferation and survival. This may involve: inhibition of NF-KB signaling pathway and of signaling pathways induced by the survival factor IL-3 (involving Akt and STAT5). Using a xenogeneic mouse model of BPDCN, LXR agonist treatment reduces BPDCN-induced cytopenia as well as bone marrow and spleen LPDC infiltration.Overall, we demonstrate that LXR receptors are functional in PDC and LPDC and are involved in a cross-regulation mechanism with NF-KB. LXR receptors promote MP clearance and control inflammatory responses in PDC, as well as exert an anti-leukemic therapeutic effect in BPDCN via several mechanisms, including cholesterol efflux.Chaque cadre doit contenir un résumé de 1700 caractères maximum, espaces compris. En cas de dépassement, la coupure sera automatique. Le doctorant adresse son texte sous forme électronique selon les recommandations de la bibliothèqueLes "Liver X receptors " (LXR) sont des récepteurs nucléaires impliqués dans Phoméostasie du cholestérol. Dans les macrophages, la stimulation de la voie LXR accroît la clairance des corps apoptotiques et réprime la réponse inflammatoire. Les LXR inhibent également la prolifération et la survie de cellules malignes.L'activation des LXR dans les cellules dendritiques plasmocytoïdes (PDG) augmentent la clairance des microparticules (MP), via l'induction du récepteur au phosphatidylsérines BAIL L'internalisation des MP active la voie NF-KB ou la voie LXR pour des MP dérivées respectivement, de cellules endothéliales (EMP) ou plaquettaires (PMP). Ces deux voies de signalisation se réprimaient mutuellement, déterminant la réponse inflammatoire des PDG.La contrepartie leucémique des PDC (LPDC) est à l'origine d'une leucémie aiguë agressive, la BPDCN. Nous avons observé une dérégulation de Phoméostasie du cholestérol dans ces cellules. L'activation de la voie LXR entraine un efflux du cholestérol associé à un effet cytotoxique et antiprolifératif. Ils peuvent impliquer : la répression de NF-KB ; ainsi que l'inhibition de la signalisation induite par le facteur de survie IL-3 (incluant STAT5 et Akt). L'utilisation d'un modèle xénogénique murin de BPDCN traitée par agoniste LXR montre une diminution de la cytopénie induite par les LPDC et des infiltrats spléniques et médullaires.Ces travaux démontrent la fonctionnalité de la voie LXR dans les PDC et LPDC, ainsi qu'une régulation croisée avec NF-KB. L'activation de cette voie a démontré son implication dans la clairance des MP et la régulation de la réponse inflammatoire des PDC, ainsi qu'un effet anti-leucémique sur les LPDC

    Development of a NanoBioAnalytical platform for "on-chip" qualification and quantification of platelet-derived microparticles.

    No full text
    International audienceBlood microparticles (MPs) are small membrane vesicles (50-1000nm), derived from different cell types. They are known to play important roles in various biological processes and also recognized as potential biomarkers of various health disorders. Different methods are currently used for the detection and characterization of MPs, but none of these methods is capable to quantify and qualify total MPs at the same time, hence, there is a need to develop a new approach for simultaneous detection, characterization and quantification of microparticles. Here we show the potential of surface plasmon resonance (SPR) method coupled to atomic force microscopy (AFM) to quantify and qualify platelet-derived microparticles (PMPs), on the whole nano-to micro-meter scale. The different subpopulations of microparticles could be determined via their capture onto the surface using specific ligands. In order to verify the correlation between the capture level and the microparticles concentration in solution, two calibration standards were used: Virus-Like Particles (VLPs) and synthetic beads with a mean diameter of 53nm and 920nm respectively. The AFM analysis of the biochip surface allowed metrological analysis of captured PMPs and revealed that more than 95% of PMPs were smaller than 300nm. Our results suggest that our NanoBioAnalytical platform, combining SPR and AFM, is a suitable method for a sensitive, reproducible, label-free characterization and quantification of MPs over a wide concentration range (≈107 to 1012 particles/mL; with a limit of detection (LOD) in the lowest ng/µL range) which matches with their typical concentrations in blood

    Bortezomib as a new therapeutic approach for blastic plasmacytoid dendritic cell neoplasm

    No full text
    Blastic plasmacytoid dendritic cell neoplasm is an aggressive hematologic malignancy with a poor prognosis. No consensus regarding optimal treatment modalities is currently available. Targeting the nuclear factor-kappa B pathway is considered a promising approach since blastic plasmacytoid dendritic cell neoplasm has been reported to exhibit constitutive activation of this pathway. Moreover, nuclear factor-kappa B inhibition in blastic plasmacytoid dendritic cell neoplasm cell lines, achieved using either an experimental specific inhibitor JSH23 or the clinical drug bortezomib, interferes in vitro with leukemic cell proliferation and survival. Here we extended these data by showing that primary blastic plasmacytoid dendritic cell neoplasm cells from seven patients were sensitive to bortezomib-induced cell death. We confirmed that bortezomib efficiently inhibits the phosphorylation of the RelA nuclear factor-kappa B subunit in blastic plasmacytoid dendritic cell neoplasm cell lines and primary cells from patients in vitro and in vivo in a mouse model. We then demonstrated that bortezomib can be associated with other drugs used in different chemotherapy regimens to improve its impact on leukemic cell death. Indeed, when primary blastic plasmacytoid dendritic cell neoplasm cells from a patient were grafted into mice, bortezomib treatment significantly increased the animals’ survival, and was associated with a significant decrease of circulating leukemic cells and RelA nuclear factor-kappa B subunit expression. Overall, our results provide a rationale for the use of bortezomib in combination with other chemotherapy for the treatment of patients with blastic plasmacytoid dendritic cell neoplasm. Based on our data, a prospective clinical trial combining proteasome inhibitor with classical drugs could be envisaged

    Amelioration of experimental autoimmune encephalomyelitis by in vivo reprogramming of macrophages using pro-resolving factors

    No full text
    Abstract Background Reinstating inflammation resolution represents an innovative concept to regain inflammation control in diseases marked by chronic inflammation. While most therapeutics target inflammatory molecules and inflammatory effector cells and mediators, targeting macrophages to initiate inflammation resolution to control neuroinflammation has not yet been attempted. Resolution-phase macrophages are critical in the resolution process to regain tissue homeostasis, and are programmed through the presence and elimination of apoptotic leukocytes. Hence, inducing resolution-phase macrophages might represent an innovative therapeutic approach to control and terminate dysregulated neuroinflammation. Methods Here, we investigated if the factors released by in vitro induced resolution-phase macrophages (their secretome) are able to therapeutically reprogram macrophages to control neuroinflammation in the model of experimental autoimmune encephalomyelitis (EAE). Results We found that injection of the pro-resolutive secretome reduced demyelination and decreased inflammatory cell infiltration in the CNS, notably through the in vivo reprogramming of macrophages at the epigenetic level. Adoptive transfer experiments with in vivo or in vitro reprogrammed macrophages using such pro-resolutive secretome confirmed the stability and transferability of this acquired therapeutic activity. Conclusions Overall, our data confirm the therapeutic activity of a pro-resolution secretome in the treatment of ongoing CNS inflammation, via the epigenetic reprogramming of macrophages and open with that a new therapeutic avenue for diseases marked by neuroinflammation

    ELMO1 signaling is a promoter of osteoclast function and bone loss

    No full text
    Osteoporosis affects millions worldwide and is often caused by osteoclast induced bone loss. Here, we identify the cytoplasmic protein ELMO1 as an important 'signaling node' in osteoclasts. We note that ELMO1 SNPs associate with bone abnormalities in humans, and that ELMO1 deletion in mice reduces bone loss in four in vivo models: osteoprotegerin deficiency, ovariectomy, and two types of inflammatory arthritis. Our transcriptomic analyses coupled with CRISPR/Cas9 genetic deletion identify Elmo1 associated regulators of osteoclast function, including cathepsin G and myeloperoxidase. Further, we define the 'ELMO1 interactome' in osteoclasts via proteomics and reveal proteins required for bone degradation. ELMO1 also contributes to osteoclast sealing zone on bone-like surfaces and distribution of osteoclast-specific proteases. Finally, a 3D structure-based ELMO1 inhibitory peptide reduces bone resorption in wild type osteoclasts. Collectively, we identify ELMO1 as a signaling hub that regulates osteoclast function and bone loss, with relevance to osteoporosis and arthritis. Osteoporosis and bone fractures affect millions of patients worldwide and are often due to increased bone resorption. Here the authors identify the cytoplasmic protein ELMO1 as an important 'signaling node' promoting the bone resorption function of osteoclasts

    Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    No full text
    International audienceProteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease

    Choroid plexus-derived extracellular vesicles exhibit brain targeting characteristics

    No full text
    The brain is protected against invading organisms and other unwanted substances by tightly regulated barriers. However, these central nervous system (CNS) barriers impede the delivery of drugs into the brain via the blood circulation and are therefore considered major hurdles in the treatment of neurological disorders. Consequently, there is a high need for efficient delivery systems that are able to cross these strict barriers. While most research focuses on the blood-brain barrier (BBB), the design of drug delivery platforms that are able to cross the bloodcerebrospinal fluid (CSF) barrier, formed by a single layer of choroid plexus epithelial cells, remains a largely unexplored domain. The discovery that extracellular vesicles (EVs) make up a natural mechanism for information transfer between cells and across cell layers, has stimulated interest in their potential use as drug delivery platform. Here, we report that choroid plexus epithelial cell-derived EVs exhibit the capacity to home to the brain after peripheral administration. Moreover, these vesicles are able to functionally deliver cargo into the brain. Our findings underline the therapeutic potential of choroid plexus-derived EVs as a brain drug delivery vehicle via targeting of the blood-CSF interface
    corecore