12 research outputs found
Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries
Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
Physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae mutant obtained by evolutionary engineering
Salt-resistant yeast strains are highly demanded by industry due to the exposure of yeast cells to high concentrations of salt, in various industrial bioprocesses. The aim of this study was to perform a physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae (S. cerevisiae) mutant generated by evolutionary engineering. NaCl-resistant S. cerevisiae strains were obtained by ethyl methanesulfonate (EMS) mutagenesis followed by successive batch cultivations in the presence of gradually increasing NaCl concentrations, up to 8.5% w/v of NaCl (1.45 M). The most probable number (MPN) method, high-performance liquid chromatography (HPLC), and glucose oxidase/peroxidase method were used for physiological analysis, while Agilent yeast DNA microarray systems were used for transcriptome analysis. NaCl-resistant mutant strain T8 was highly cross-resistant to LiCl and highly sensitive to AlCl3. In the absence of NaCl stress, T8 strain had significantly higher trehalose and glycogen levels compared to the reference strain. Global transcriptome analysis by means of DNA microarrays showed that the genes related to stress response, carbohydrate transport, glycogen and trehalose biosynthesis, as well as biofilm formation, were upregulated. According to gene set enrichment analysis, 548 genes were upregulated and 22 downregulated in T8 strain, compared to the reference strain. Among the 548 upregulated genes, the highest upregulation was observed for the FLO11 (MUC1) gene (92-fold that of the reference strain). Overall, evolutionary engineering by chemical mutagenesis and increasing NaCl concentrations is a promising approach in developing industrial strains for biotechnological applications
Simultaneous determination of selected endocrine disrupter compounds in wastewater samples in ultra trace levels using HPLC-ES-MS/MS
WOS: 000305979700045PubMed: 21912869An analytical procedure for the simultaneous determination of six selected endocrine disrupter compounds (EDCs: diltiazem, progesterone, benzyl butyl phthalate (BBP), estrone, carbamazepine (Cbz), acetaminophen) was developed by liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ES-MS/MS). All of the parameters for HPLC and ES-MS/MS systems including mobile phase composition, flow rate, and sample injection volume were optimized to obtain not only the best separation of species interested but also low detection limits. Reverse phase chromatography coupled to ES-MS/MS was used for the separation and detection of EDCs. Formic acid (0.10% ) and 5.0 mM ammonium formate were selected as mobile phase composition in gradient elution. Detection limits for diltiazem, progesterone, BBP, estrone, Cbz, and acetaminophen were found to be 0.13, 0.12, 0.04, 0.13, 0.12, and 0.05 ng/mL, respectively. Influent and effluents from three different wastewater treatment plants located in Ankara, i.e., rotating flat-sheet membrane unit, pilot type flat-sheet membrane unit located at METU Campus and samples from Ankara central wastewater treatment plant were analyzed for their EDCs contents under the optimum conditions.Turkish Scientific and Technical Researches Institution (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [108Y272]; METU-TechnopolisMiddle East Technical UniversityThis study was supported by Turkish Scientific and Technical Researches Institution (TUBITAK) Project No 108Y272 and METU-Technopolis
Inguinoscrotal Bladder Hernia Mimicking Testicle Tumor
Bladder hernias usually begin asymptomatically and are discovered incidentally at the time of discovery. Preoperative diagnosis of bladder hernias is important to reduce the risk of bladder injury during surgery. Although F-18 FDG PET/CT is applied for oncological purposes, benign conditions should also be taken into account when evaluating the implants. In this article, a case of bladder hernia, which can be confused with pathological cancer involvement, with the diagnosis of F-18 FDG PET/CT performed in a 73-year-old male patient with renal cell carcinoma is presented
Effects of endothelin receptor blockade and COX inhibition on intestinal I/R injury in a rat model: Experimental research.
Background: Intestinal ischemia is a highly morbid and mortal condition with no specific treatment. The present study aimed to investigate the effects of cyclooxygenase (COX) inhibition synchronized with nitric oxide (NO) release and endothelin (ET) receptor blockade on oxidative stress, inflammation, vasoconstriction, and bacterial translocation which occur during ischemia-reperfusion (I/R) injury in in-vivo rat intestinal I/R model.
Materials and methods: 36 male Wistar rats were randomly divided into six groups (n = 6). Superior mesenteric artery blood flow (SMABF) was recorded; SMA was occluded for 30 min; SMABF was re-recorded at the beginning of the reperfusion phase. Rats were sacrificed after the reperfusion period of 60 min. Blood and tissue samples were obtained. Acetylsalicylic acid (ASA), NO-ASA, flurbiprofen (FLUR), and Tezosentan (TS) were administered 15 min after ischemia. Histopathological examination, bacterial translocation, and biochemical analysis were performed in plasma and tissue samples.
Results: SMABF difference, mean Chiu's score and bacterial translocation were increased in the I/R group and decreased in the treatment groups. Plasma LDH, transaminases, intestinal fatty acid-binding protein (I-FABP), TNF-alpha, ICAM-1, interferon-gamma (IFN-gamma) and proinflammatory cytokine panel; tissue lipid peroxidation, MPO, xanthine oxidase (XO), NO, NF-kB levels and the expression of TNF-alpha were significantly elevated in the I/R group and markedly decreased in the treatment groups. The tissue antioxidant status was decreased in the I/R group and increased in the treatment groups.
Conclusion: It is suggested that NO-ASA, TS, and FLUR can be introduced as promising therapeutics to improve intestinal I/R injury
In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization
Microbial ethanol production is an important alternative energy resource to replace fossil fuels, but at high level, this product is highly toxic, which hampers its efficient production. Towards increasing ethanol-tolerance of Saccharomyces cerevisiae, the so far best industrial ethanol-producer, we evaluated an in vivo evolutionary engineering strategy based on batch selection under both constant (5%, v v(-1)) and gradually increasing (5-11A%, v v(-1)) ethanol concentrations. Selection under increasing ethanol levels yielded evolved clones that could tolerate up to 12% (v v(-1)) ethanol and had cross-resistance to other stresses. Quite surprisingly, diploidization of the yeast population took place already at 7% (v v(-1)) ethanol level during evolutionary engineering, and this event was abolished by the loss of MKTI, a gene previously identified as being implicated in ethanol tolerance (Swinnen et al., Genome Res., 22, 975-984, 2012). Transcriptomic analysis confirmed diploidization of the evolved clones with strong down-regulation in mating process, and in several haploid-specific genes. We selected two clones exhibiting the highest viability on 12% ethanol, and found productivity and titer of ethanol significantly higher than those of the reference strain under aerated fed-batch cultivation conditions. This higher fermentation performance could be related with a higher abundance of glycolytic and ribosomal proteins and with a relatively lower respiratory capacity of the evolved strain, as revealed by a comparative transcriptomic and proteomic analysis between the evolved and the reference strains. Altogether, these results emphasize the efficiency of the in vivo evolutionary engineering strategy for improving ethanol tolerance, and the link between ethanol tolerance and diploidization