173 research outputs found

    A hybrid spatiotemporal model of PCa dynamics and insights into optimal therapeutic strategies

    Get PDF
    Using a hybrid cellular automaton with stochastic elements, we investigate the effectiveness of multiple drug therapies on prostate cancer (PCa) growth. The ability of Androgen Deprivation Therapy to reduce PCa growth represents a milestone in prostate cancer treatment, nonetheless most patients eventually become refractory and develop castration-resistant prostate cancer. In recent years, a “second generation” drug called enzalutamide has been used to treat advanced PCa, or patients already exposed to chemotherapy that stopped responding to it. However, tumour resistance to enzalutamide is not well understood, and in this context, preclinical models and in silico experiments (numerical simulations) are key to understanding the mechanisms of resistance and to assessing therapeutic settings that may delay or prevent the onset of resistance. In our mathematical system, we incorporate cell phenotype switching to model the development of increased drug resistance, and consider the effect of the micro-environment dynamics on necrosis and apoptosis of the tumour cells. The therapeutic strategies that we explore include using a single drug (enzalutamide), and drug combinations (enzalutamide and everolimus or cabazitaxel) with different treatment schedules. Our results highlight the effectiveness of alternating therapies, especially alternating enzalutamide and cabazitaxel over a year, and a comparison is made with data taken from TRAMP mice to verify our findings

    Optimizing the bioenergy water footprint by selecting SRC willow canopy phenotypes: regional scenario simulations

    Get PDF
    © The Author(s) 2019. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Background and Aims: Bioenergy is central for the future energy mix to mitigate climate change impacts; however, its intricate link with the water cycle calls for an evaluation of the carbon–water nexus in biomass production. The great challenge is to optimize trade-offs between carbon harvest and water use by choosing cultivars that combine low water use with high productivity. Methods: Regional scenarios were simulated over a range of willow genotype × environment interactions for the major UK soil × climate variations with the process-based model LUCASS. Soil available water capacity (SAWC) ranged from 51 to 251 mm and weather represented the north-west (wet, cool), north-east (dry, cool), south-west (wet, warm) and south-east (dry, warm) of the UK. Scenario simulations were evaluated for small/open narrow-leaf (NL) versus large/closed broad-leaf (BL) willow canopy phenotypes using baseline (1965–89) and warmer recent (1990–2014) weather data. Key Results: The low productivity under baseline climate in the north could be compensated by choosing BL cultivars (e.g. ‘Endurance’). Recent warmer climate increased average productivity by 0.5–2.5 t ha−1, especially in the north. The modern NL cultivar ‘Resolution’ had the smallest and most efficient water use. On marginal soils (SAWC <100 mm), yields remained below an economic threshold of 9 t ha−1 more frequently under baseline than recent climate. In the drought-prone south-east, ‘Endurance’ yielded less than ‘Resolution’, which consumed on average 17 mm year−1 less water. Assuming a planting area of 10 000 ha, in droughty years between 1.3 and 4.5 × 106 m3 of water could be saved, with a small yield penalty, for ‘Resolution’. Conclusions: With an increase in air temperature and occasional water scarcities expected with climate change, high-yielding NL cultivars should be the preferred choice for sustainable use of marginal lands and reduced competition with agricultural food crops.Peer reviewedFinal Published versio

    Changes in dream features across the first and second waves of the Covid-19 pandemic

    Get PDF
    Research during the Covid-19 pandemic has highlighted its significant impact on dreaming. Here we address changes in dream features both during the first wave, when the Italian government imposed a total lockdown, and the second wave (autumn 2020), when a partial lockdown was effected. In April 2020 (total lockdown), 1,622 participants (Mage\ua0=\ua034.1\ua0\ub1\ua013.6 years; 1171F) completed an online survey including the Pittsburgh Sleep Quality Index and a set of questions on dream features and their possible changes relative to the month preceding the lockdown (pre-total lockdown). In November 2020 (partial lockdown), 214 participants (Mage\ua0=\ua036.78\ua0\ub1\ua014.2\ua0years; 159F) from the previous sample completed the same survey. Approximately half of the subjects reported increased or decreased dream frequency (30.5% and 21.8%), length (27.1% and 15.8%) and vividness (31.5% and 17.1%) during total lockdown as well as during partial lockdown (frequency: 30.3% and 13.5%; length: 23.3% and 12.6%; vividness: 31.6% and 24.1%). Dream affect became significantly more negative in total lockdown relative to pre-total lockdown and in partial lockdown relative to pre-partial lockdown (both p\ua0<.001). Both in total lockdown and partial lockdown, increased negative dream emotionality significantly predicted changes in dream frequency, length and vividness, and was significantly predicted, in turn, by worsened sleep quality. Our data confirm that dream features are significantly affected by major life changes such as those imposed by a pandemic. The fact that between lockdowns negative dream affect returned almost to baseline level suggests that dream emotionality is closely related to lifestyle and wake-time emotional changes. Also, our findings point to a modulating role of sleep quality on dream emotionality

    The Molecular Interplay between Human Oncoviruses and Telomerase in Cancer Development

    Get PDF
    Funding Information: This work was supported by the Italian Ministry of Health Ricerca Corrente 2022 Grant L1/10. M.I. Isaguliants was supported by the Latvian Science Fund, project LZP 2021/1-0484. Publisher Copyright: © 2022 by the authors.Human oncoviruses are able to subvert telomerase function in cancer cells through multiple strategies. The activity of the catalytic subunit of telomerase (TERT) is universally enhanced in virus-related cancers. Viral oncoproteins, such as high-risk human papillomavirus (HPV) E6, Epstein–Barr virus (EBV) LMP1, Kaposi’s sarcoma-associated herpesvirus (HHV-8) LANA, hepatitis B virus (HBV) HBVx, hepatitis C virus (HCV) core protein and human T-cell leukemia virus-1 (HTLV-1) Tax protein, interact with regulatory elements in the infected cells and contribute to the transcriptional activation of TERT gene. Specifically, viral oncoproteins have been shown to bind TERT promoter, to induce post-transcriptional alterations of TERT mRNA and to cause epigenetic modifications, which have important effects on the regulation of telomeric and extra-telomeric functions of the telomerase. Other viruses, such as herpesviruses, operate by integrating their genomes within the telomeres or by inducing alternative lengthening of telomeres (ALT) in non-ALT cells. In this review, we recapitulate on recent findings on virus–telomerase/telomeres interplay and the importance of TERT-related oncogenic pathways activated by cancer-causing viruses.publishersversionPeer reviewe

    Cannabidiol alters mitochondrial bioenergetics via VDAC1 and triggers cell death in hormone-refractory prostate cancer

    Get PDF
    : In spite of the huge advancements in both diagnosis and interventions, hormone refractory prostate cancer (HRPC) remains a major hurdle in prostate cancer (PCa). Metabolic reprogramming plays a key role in PCa oncogenesis and resistance. However, the dynamics between metabolism and oncogenesis are not fully understood. Here, we demonstrate that two multi-target natural products, cannabidiol (CBD) and cannabigerol (CBG), suppress HRPC development in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model by reprogramming metabolic and oncogenic signaling. Mechanistically, CBD increases glycolytic capacity and inhibits oxidative phosphorylation in enzalutamide-resistant HRPC cells. This action of CBD originates from its effect on metabolic plasticity via modulation of VDAC1 and hexokinase II (HKII) coupling on the outer mitochondrial membrane, which leads to strong shifts of mitochondrial functions and oncogenic signaling pathways. The effect of CBG on enzalutamide-resistant HRPC cells was less pronounced than CBD and only partially attributable to its action on mitochondria. However, when optimally combined, these two cannabinoids exhibited strong anti-tumor effects in TRAMP mice, even when these had become refractory to enzalutamide, thus pointing to their therapeutical potential against PCa

    Lighting the way to willow biomass production

    No full text
    Biofuels produced from willow could help reduce our dependence on fossil fuels. To maximise yields per hectare light interception and utilisation of the plant canopy need to be optimised. Jennifer Cunniff and Marianna Cerasuolo explain how this target can be reached by integrating morphological field measurements and modelling techniques
    corecore