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ARTICLE INFO ABSTRACT

MSC: Using a hybrid cellular automaton with stochastic elements, we investigate the effectiveness of multiple drug
92C50 therapies on prostate cancer (PCa) growth. The ability of Androgen Deprivation Therapy to reduce PCa
37N25 growth represents a milestone in prostate cancer treatment, nonetheless most patients eventually become
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enzalutamide has been used to treat advanced PCa, or patients already exposed to chemotherapy that stopped
responding to it. However, tumour resistance to enzalutamide is not well understood, and in this context,
preclinical models and in silico experiments (numerical simulations) are key to understanding the mechanisms
of resistance and to assessing therapeutic settings that may delay or prevent the onset of resistance. In
our mathematical system, we incorporate cell phenotype switching to model the development of increased
drug resistance, and consider the effect of the micro-environment dynamics on necrosis and apoptosis of the
tumour cells. The therapeutic strategies that we explore include using a single drug (enzalutamide), and drug
combinations (enzalutamide and everolimus or cabazitaxel) with different treatment schedules. Our results
highlight the effectiveness of alternating therapies, especially alternating enzalutamide and cabazitaxel over a
year, and a comparison is made with data taken from TRAMP mice to verify our findings.

1. Introduction currently provided for PCa in the UK [12], including chemotherapy,

steroid therapy and radiotherapy.

Prostate cancer (PCa) is the second most common cause of cancer
among men worldwide [2,3], accounting for 26% of all new cancer
cases in males in the UK as of 2016 [4], and with more than 11,500
men dying with PCa every year [5], research into the causes of prostate
cancer, and potential therapies, remains critical. The prostate is a small
organ found immediately below the bladder that manufactures and
secretes seminal fluid, and maintaining the prostate in good order
is essential for optimal urinary health and sexual vitality [6]. The
development of prostate tumours is heavily dependent on the presence
of androgens (the male sex hormones), and as such the inhibition of
androgen signalling either by depriving the tumour of androgen or by
blocking the activity of the relevant receptors has led to the use of
androgen deprivation therapy (ADT) as the most common treatment
for advanced PCa [7,8]. While ADT is effective for most patients [9]
at controlling PCa for between 15 and 18 months [10], clinical studies
have shown that the majority of prostate tumours will begin to show
signs of growth after this period [11], leading to castration-resistant
prostate cancer (CRPC) for which the patient has an average survival
period of two to three years. Alternative methods of treatment are
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Over the past few decades mathematical models of tumour growth
have been implemented and fitted to experimental and/or clinical data
in order to better understand this disease, to formulate new hypotheses,
to make predictions, and to guide new experiments and clinical trials
in an effort to obtain personalised cancer treatments [13]. In silico
experiments allow us to consider multiple hypotheses and to test the
effect of different treatments on cancer progression without the ethical
issue of not providing the right treatment to patients [14]. In this work,
we will use a newly developed mathematical model to focus on the
effectiveness of different chemotherapy regimes and their impact upon
PCa cellular differentiation.

Cerasuolo et al. [1] developed a stochastic differential equation
(SDE) model that used the experimental evidence and collected data
from the response of TRAMP mice (a multistage transgenic mouse
model that mimics the onset and progression of PCa) to enzalutamide,
both in vivo and in vitro, to describe the tumour’s response to enzalu-
tamide and subsequent relapse. As part of the study in silico experiments
showed that, under any length of treatment schedule, enzalutamide-
resistant cells become the dominant phenotype, suggesting that these

Received 15 May 2022; Received in revised form 9 November 2022; Accepted 9 November 2022

Available online 15 November 2022

0025-5564/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.mbs.2022.108940
https://www.elsevier.com/locate/mbs
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2022.108940&domain=pdf
mailto:marianna.cerasuolo@port.ac.uk
https://doi.org/10.1016/j.mbs.2022.108940
http://creativecommons.org/licenses/by/4.0/

A. Burbanks, M. Cerasuolo, R. Ronca et al.

cells have a higher fitness than sensitive cells, meaning that they
are able to grow more efficiently under oxygen- and glucose-deprived
conditions. While the model considers TRAMP mice, we note that PCa
in TRAMP mice mimics the development of human PCa, as well as
reacting and relapsing in response to ADT in a manner similar to that
observed in men [15].

One limitation of the SDE approach is that it lacks a representation
of the spatial distribution of cell types, which can make comparison to
real world data difficult (e.g. results from non-invasive imaging tests
such as MRI scans [16]). Incorporating this concept can be achieved by
using either a continuum model, a cellular automaton (CA) or a hybrid
approach. While continuum models have been used extensively to
consider many different elements of tumour growth and treatment [17—
20], CA models are considered more efficient to use due to computa-
tional ease and the ability to provide qualitative information without
needing exact parameter values [21-25]. However, as the behaviours of
the PCa cells and the various chemicals occur on different time scales,
we consider a multi-scale model. This leads to a hybrid approach, in
which partial differential equations (PDEs) govern the behaviour of
the drugs and other chemicals (over the ‘fast’ timescale), and a CA
provides the rules for the dynamics of the tumour cells (over the ‘slow’
timescale). Hybrid approaches have been used to consider avascular
tumour growth [22], immune cell response [26], and radiotherapy
in PCa [27]. The novelty of this model comes from considering the
effects of multiple drug therapies, combined with modelling the spatial
distributions of cell-types and chemicals, and in the use of probability
functions informed by the previously developed SDE, in formulating the
CA rules to govern the behaviour of the tumour cells. We also incor-
porate asymmetric cell division [28,29] to represent the spontaneous
development of mutations.

1.1. Overview

In Section 2 we give the formulation of the hybrid model, in-
corporating the PDEs that model chemical interactions in the micro-
environment (Section 2.1) and the stochastic CA rules that govern cell
behaviour (Section 2.2), paying particular attention to the functions
used to model the probabilities of certain cell-level events. Section 2.3
provides a brief overview of the therapies that will be considered.

In Section 3, we describe the simulation process used for the hybrid
model and indicate how the various drug therapies are implemented.
Table A.1 provides details of the experimental parameters and the
sources from which they were obtained. In Section 4 we describe
the results of our simulations and their robustness, and compare the
performance of the various therapies in the model. We conclude with
a discussion (Section 5) of the implications of our findings and suggest
further improvements to the model.

2. Model formulation

For this model we consider a tumour that has three populations of
cell phenotypes: one PCa cell phenotype sensitive to the chemotherapy
drug enzalutamide, S;, another resistant to it, R;, and the necrotic
cells, N. We consider that each tumour cell phenotype will go through
a proliferating phase (subscript p) and a quiescent phase (subscript
q), with different behaviour for each phase. While the cell behaviour
will be governed by the rules of the CA described below, the micro-
environment consisting of oxygen, glucose, hydrogen ions and cancer
drugs will be modelled using a system of PDEs. We do not consider
androgen as a limiting factor on the growth of the tumour, as we
assume that the tumour is not also undergoing ADT.

This model simulates a two dimensional slice through a tumour
and surrounding tissue, with a boundary region intended to simulate
the local vasculature that delivers nutrients and the selected drugs into
the region by diffusion, and excretes waste products such as hydrogen
ions. To do this we consider a square spatial domain, 2, which has
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been partitioned into a regular grid of 100 x 100 sites (or points)
with a boundary region occupying the outermost ring of sites. Each site
represents a region in the slice of tissue measuring 20 pm X 20 pm in
size, chosen to have approximately the same area as a tumour cell [30].
The interior sites are each occupied by one of six cell types; S,, S,
R,, R;, N, and healthy prostate cells, P. The healthy prostate cells are
considered to have little to no effect on the micro-environment when
compared to the PCa cells, and are assumed to undergo apoptosis as
the tumour grows, allowing the tumour to expand unhindered.

2.1. Micro-environment

The micro-environment is defined to be the filled space around a
cell with which only that cell interacts. The chemicals considered in the
model are oxygen, O, glucose, G, and hydrogen ions, H, as they have
a key role in cell growth either as nutrients or inhibitors. We assume
that O, G, and H behave as shown by Ibrahim-Hashim et al. [31]
and Robertson-Tessi et al. [30], with the relevant parameter values
dependent on the cell type present at the corresponding site, where we
assume that necrotic cells do not consume O or G, and do not produce
H.

The supplemental information for [30] considers that cells
metabolise oxygen and glucose to produce adenosine triphosphate
(ATP), which is the primary source of energy for cellular behaviour,
and that there are two mechanisms for ATP production: the glycolytic
pathway, which is less efficient but does not require oxygen, and
the aerobic respiration pathway, which does require oxygen and is
roughly eighteen times more efficient than the glycolytic pathway.
Under ideal conditions a cell will use the aerobic pathway exclusively.
However, if oxygen becomes scarce the cell will temporarily increase
usage of the glycolytic pathway in an attempt to mitigate the decrease
in ATP production, and if oxygen becomes absent then the glycolytic
pathway is used exclusively. A side effect of over-usage of the glycolytic
pathway is an acidification of the extracellular pH, which is caused
by the final by-product of the glycolytic pathway, lactic acid, being
excreted into the micro-environment. This can be detrimental to cell
survival. However, some tumour cells show a higher adaptability to
acidic environments, especially enzalutamide-resistant PCa cells, which
perform much better (with higher fitness) in a more acidic environment
than enzalutamide-sensitive PCa or healthy prostate cells [1].

When glucose is depleted, the cell must either use alternative
sources of energy or reduce its ATP requirements by becoming qui-
escent. As this model does not consider other energy sources, the cells
are assumed to become quiescent when ATP production drops below a
threshold, and then to undergo apoptosis if a minimal ATP need is not
met.

To discuss the functional forms used to model the activity of the
respective chemicals, Robertson-Tessi et al. [30] considered the impor-
tant steps of metabolism which use several intermediate chemicals not
actively modelled, such as nicotinamide adenine dinucleotide (NAD"),
its reduced form (NADH) and pyruvate (Pyr), which is the chemical
used in both the aerobic and anaerobic pathways.

We assume that the ratio of the concentration of NAD" to that of its
reduced form remains relatively constant over long time periods, and
that ATP is well regulated under the conditions modelled. The final
assumption for the internal metabolism is that pyruvate remains stable
over time, as it is not exported from the cell. This allows us to consider
the temporal derivatives of these intermediate products to be zero, and
thus the cell is treated as a closed system, except for the inputs of
oxygen and glucose and the excretion of hydrogen ions, for the purpose
of modelling the internal metabolism.
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2.1.1. Cell metabolism model equations

All equations presented in this section are well established equations
for cellular metabolism, and were developed by Robertson-Tessi et al.
in 2015 [30]. The diffusion and consumption of oxygen, O(x,1), is
modelled using the reaction—diffusion equation:

00(x, 1) ok, 1)

= DoV2OX, 1) = Vy oD
ot oV O Yo 5 kg

(€Y

where D, denotes the diffusion coefficient, V,, denotes the maxi-
mum oxygen consumption under ideal conditions and k, is the half-
maximum consumption for the Michaelis-Menten kinetics, with pa-
rameter values dependent on the cell type present at the position
x. Assuming that normal ATP demand is satisfied when the oxygen
concentration is high enough to ensure that

O(x,1)

V=V, 2
°0x, 1 + ko ° @

we assume that the target normal ATP production is given [30] by
29V,

Glucose consumption is driven to satisfy the normal ATP demand,
and as such is given by:

O(x,1)
3 A 0 5t thg ,
G(x,1) _ DGVZG(X, /- pPgAo O(x,t)+ko G(x,1) i )
ot 2 10 G(x,1) + kg

where Dy; is the diffusion coefficient, p; is the multiplier representing
the altered glucose metabolism of the tumour cells, and k; is the half-
maximum of the Michaelis-Menten Kkinetics, which was introduced to
stop high glucose consumption when the concentration was low. The
fraction % is included to recognise that from five oxygen molecules
there are 27 ATP molecules produced under ideal conditions, with the
additional factor of a half included to reflect that each glucose molecule
is guaranteed to produce a minimum of two ATP molecules [30]. As
with glucose, the parameter values are dependent on the cell type
present at the position x.

Hydrogen regulation involves a proportional relationship between
anaerobic glucose consumption and the extracellular concentration of
hydrogen, and is given by:

O(X,
29 (pGVO ~Vogi )
< ,

0H(x,1)

e Dy V?HX, 1)+ ky

)

where Dy is the diffusion coefficient, p; is the altered glucose
metabolism multiplier seen in many tumour cells, and k accounts for
proton buffering (meant as the capacity to contain pH lowering) caused
by sodium bicarbonate and other physiological buffer systems present
in vivo. When the oxygen concentration is sufficient to allow maximum
aerobic respiration the net hydrogen production is zero for the normal
phenotype, while when there is no aerobic respiration the hydrogen
production rate will be roughly twice the glucose consumption. As we
consider p; > 1 for the PCa cells, i.e., we assume both tumour cell
phenotypes to be glycolytic at some level, there will always be some
hydrogen production, regardless of oxygen consumption.

Finally we consider the ATP dynamics, in which the production is
determined by the nutrient consumption rates, that is

O(x,1)

7 —_—
0A(X,t A 00, G(x,t
QAND _ p v2a,n+2| 800 (ko | GO0
ot 2 10 Gx.0)+ kg
(6)
ox.1)
2o O(x.1)+kg
B s

The ATP value is used to determine whether cells switch between the
proliferating and quiescent phase, and whether apoptosis occurs.
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2.1.2. Drug therapy model equations

The drugs introduced in the therapies of this model are enza-
lutamide, Ez, cabazitaxel, Cb, and everolimus, Ev. Enzalutamide is
a non-steroidal androgen receptor inhibitor that has been approved
for the treatment of CRPC [32], although notably PCa progression is
eventually seen in patients, and PCa resistance to enzalutamide has
also been noted. At this time, the mechanism that governs this resis-
tance has not been discovered [33]. Cabazitaxel is a next generation
taxane, a type of drug used widely for chemotherapy, that works by
impairing the natural dynamics of microtubules, which provide shape
and structure to eukaryotic cells, blocking mitosis and subsequently
leading to apoptosis [34]. It has been approved for treatment when
PCa progression has occurred during treatment with docetaxel [35],
although it has been used alone in clinical trials [36]. Everolimus is an
mTOR inhibitor (mTOR is the pathway that regulates all major cellular
processes such as cell growth, proliferation and protein synthesis) and
is involved in several clinical trials evaluating combinations of drugs
as potential therapeutic strategies [37]. The PDEs for the drugs can be
written as:

% = Dy, V2Ez(x, 1),

ICh(x, 1

% = Dy V2Ch(x, 1), %)
% = Dy, V2Ev(x, 1),

where the D; (for i = Ez, Cb, Ev) are the constant diffusion coefficients
for the respective drugs, and as such we assume that the drugs are
unhindered by the type of cell they are diffusing around. We also
assume that the drugs are only effective against proliferating cells, due
to their increased metabolic activity over quiescent cells. Finally, the
degradation of the drugs is assumed to occur in the vasculature between
doses, rather than in the tissue level, and as such the degradation term
is included in the boundary condition for the tissue region. Hence, these
Egs. (7) are a simplified version of the drug equations considered by
Hamis et al. [38] in which drug decay appears explicitly.

2.1.3. Micro-environment model equations and parameters
From the above, we consider the micro-environment to be governed
by the following system of PDEs:

de(x.1
cg‘ ) _ D,V2e(x.)+g, c=0,G, H,A
aj(xt 0 ®
_at’ = D;V3j(x,1) j =Ez,Cb,Ey,
with
Y __(Peho 21\ _Gxn)
£o 0N + kg f¢ 2 T10%) Gt kg

29 (p6Vo + 20) 27g,
gH =kH<f s 84 =_<2gG+TO)

)]

with parameter values dependent on the cell type present. All of the
micro-environment equations are assumed to have Dirichlet boundary
conditions:

O(x,1) = 0.014 mMol/Z, G(x,1) = 0.05 mMol/Z,
H(x,t) =172 pH, A(x,1) = 1 mMol/?, (10)
Ez(x,1) = fg, (), Cb(x,1) = fep(1), Ev(X,1) = fE, (D),

for all x € 0. In TRAMP mice enzalutamide is given orally (3
mg/kg in the drinking water) daily. The dosage and its consumption
are such that the effective concentration in the vasculature fluctuates
so minutely as to be considered constant, which the model readily
assumes. Cabazitaxel is administered by intraperitoneal injection, that
is direct injection into the body cavity, in a much larger dose once
(15 mg/kg) every fortnight, and 1 mg/kg of everolimus is given every
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other day by intraperitoneal injection. The model assumes an adaptive
therapy for the drugs, where the amount of drug provided is such that
the total drug concentration in the blood flow does not exceed the
target quantity. Therefore, when the new cycle starts the maximum
drug concentration in the body will be the one indicated in (13) for
enzalutamide, in (14) for cabazitaxel, and in (15) for everolimus.

As the drugs do not immediately leave the vasculature when the
doses stop, we assume that the drug degradation occurs in the vascula-
ture. Therefore the change in drug concentration in the vasculature is
given by

D =-npD(), an
which can be solved to give
D = D(0)e™"", (12)

and therefore we consider an exponential term for the degradation rate
in the boundary conditions of the drugs.

To reflect the dose and timings of each drug, we consider the
boundary condition for each drug to be a function of time. In the
first seven weeks of tumour growth the boundary conditions for the
drugs are initially set to zero, as we assume that no treatment is
given before the tumour is “visible”. Subsequently, the enzalutamide
boundary function fg,(r) is given by

Ez* if telt,1],
Je.(0) = 13
Ez*e 07 i 1> 1),
where Ez* is the administered dose over a day, 7, is the degradation
rate, #; are the start times for giving the doses of enzalutamide, ¢; are
the stop times for finishing the course of dosages, i < j and i, j € J,
where J is the set of start and stop dates of the given therapy.
The cabazitaxel boundary condition is given by

Cb* if t=1,
Cb 14

w —Hep(t—1h) i i+1
Cb*e o’ if oy <T<Igys

Sep(®) =

where Cb* is the administered dose over a day, 5, is the degradation
rate and t"Cb is a start date, with i € I,, where I, is the set of start-
ing days for the selected therapy. Similarly, the everolimus boundary
condition is

Ev* it =1,
Seo() = (15)

e (f—fi N . .
Ev¥e Mgy (1—=15,) if t;-z <t< tl+17
v Ev

where Ev* is the administered dose over a day, #, is the degradation
rate, 1, is a start date with i € I,, where I, is the set of starting days
for the selected therapy. An illustration of the boundary conditions used
for each type of therapy is provided in Appendix B.

2.2. Cellular automata rules for the hybrid model

In this section we describe the CA rules for the PCa cell types S,
S, R, and R,. Healthy cells and necrotic cells are assumed to remain
unaffected throughout the simulation, and as such do not have CA rules
assigned to them. For all rules we use x to denote the grid location
for referencing the correct concentration of O, G and H, and the
drugs, and the behaviour addressed by the rule occurs with the relevant
probability P(x) on each step [26]. Each CA iteration represents a single
day, with each grid point being assessed once per iteration. Tumour
cells follow the rules given below in order, only moving on to consider
the next rule in the sequence if the checked behaviour does not happen,
as illustrated in Fig. 1.

Parameter values used in Figs. 4-16 can be found in Table A.1. The
probabilities that refer to drug-induced death are based on experiments
and models developed in [1].
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Necrosis. Necrosis is unplanned cell death that happens when the
oxygen concentration becomes lower than a certain threshold, denoted
by Oy . In the model it occurs with probability

P 1

necro = T Ty Oy -0t ae

(see Fig. 2(a)). Here ky is the stiffness of the observed curve, with a
larger k, giving a sharper transition at the threshold [26]. If necrosis
occurs, then the tumour cell becomes an N cell.

Apoptosis. Programmed cell death, apoptosis, occurs naturally when
ATP total production, A(x, 1), fails to reach a minimum threshold, ATP,,.
Here we assume it occurs with probability

1

Pipop = 1 + e—kaATP;— A1)’ a7

(see Fig. 2(b)) with k, as the stiffness of the curve [26].

Drug death. In [1] through in vitro experiments the authors showed that
the drugs considered in this study affect the sensitive and resistant phe-
notype of the cells differently. Therefore, following results and models
suggested in [1] for the death rates, we consider different functions
governing the probability of death for each phenotype. For therapies
where we administer multiple drugs, we compare the corresponding
probabilities against a randomly generated number chosen uniformly in
[0, 1], and the cell dies if any of the probabilities are greater than the
random number. As stated before, we assume that the chemotherapy
drugs only interact with the proliferating cells, due to their increased
activity and uptake rate compared to the quiescent cells.

Based on the work of Cerasuolo et al. [1] we hypothesise that S,
cell death by enzalutamide and cabazitaxel happens with the following
probabilities:

PS—Enza = min [6EZEZ(Xa 1), 1] s
50, Ch(x, 1)

b= 1
kep + Cb(x, 1)’ as)

Ps_caba =

where g, and 6, are the mortality rates, and k¢, is the half-maximum
coefficient for cabazitaxel.

For R, cells cabazitaxel is more effective than enzalutamide [1], and
so we use the following probabilities:

P _ AEZEZ(Xs 1)
R-Enza =+ Bax, 1)
Pr_caba = min [Ac,Cb(x, 1), 1], 19)

where A, and Aq, are the mortality rates, and kg, is the half-maximum
coefficient for enzalutamide (see Fig. 3(a) and Fig. 3(b)).

As for everolimus, while we assume that it is more effective than
enzalutamide against R, cells, there is insufficient evidence to assume
that it has the linear death rate we have considered for cabazitaxel [1].
Therefore, for both cell phenotypes we consider a Michaelis-Menten
dynamic [1], represented by

» S Evx.n)
S—Evero — kEvS +Ev(x, t) >
Ag Ev(X, 1)
PR—Evero = - (20)

kgyg + Ev(x,1)’

(see Fig. 3(c)) where &g, and Ag, are the mortality rates, and kg, g and
kgyr are the respective half-maximum coefficients.

It is important to observe that even if a cell population is resistant
to a drug, it will still show some degree of sensitivity to that drug.

Proliferating to quiescent phase switch. As previously mentioned, cells
can switch between the proliferating and quiescent phases based on
their total ATP production. We consider the probability that a cell will
become quiescent to be defined by

1

—k,(ATP,—A(x.1)

P, =
e 1+e

2D
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Fig. 1. A flowchart of one step in the life cycle of a PCa cell using the CA rules.
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Fig. 2. Probability of necrosis and apoptosis occurring.

where ATP, is the ATP production threshold for cells to remain pro-
liferating. As PCa cells are either proliferating or quiescent we assume
that the corresponding probability of becoming proliferating is given

by
Pp=1-P,. (22)

Proliferation. Proliferation is only considered for cells that did not

undergo a phase switch within the current CA iteration. For the S,

and R, cells to proliferate there must be a free (from tumour cells)
neighbouring grid point in any of the four cardinal directions, and if

this condition is met then proliferation occurs with probability

U O(x.1) G(x.1) 1\™
¥ —Prolif = APy \ Lm0 )\ exn ) \Hx ) |

23)
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Fig. 3. Drug death probabilities, where the blue dotted line is S, and the orange full line is R,.

for Y = R, S. This is based on the proliferation function first introduced
by Casciari et al. [39], where K, is the maximum proliferation rate
for the specific phenotype, p,y is the fitness coefficient that determines
how well cells are able to cope with a hostile environment, p, and p;
are the half-maximum constants for the Michaelis-Menten kinetics for
oxygen and glucose respectively, and n, < 1 is a limiting factor on the
impact of hydrogen.

Following the approach by Portz et al. [40], sensitive cells can
proliferate in a symmetric (Sp -5, +Sp) or asymmetric (Sp > S,+ Rp)
way depending on a constant probability k,, while resistant cells are
assumed to proliferate symmetrically. After cell division, one of the
daughter cells occupies one of the free neighbouring grid points, chosen
at random, and the cell in the original grid point is checked to see if
the enzalutamide concentration has caused it to change its resistance
phenotype, while the new cell keeps the just assigned status until the
end of its first life cycle. Based on experimental evidence [1], and as it
can be observed in Fig. 4, the switch of .S, cells to resistant cells occurs
with probability

Ez(x, 1)

= a, + Ez(x,1)’ @4

Resis

and for R, cells the switch to sensitive cells occurs with probability
D

a, + Ez(x, 1)’ 2%

P, Sensi —

If a cell fails to proliferate, either due to no free neighbours or due
to unfavourable conditions, the cell instead undergoes a phase switch
and becomes quiescent.

2.3. Therapies

In the following section we show the simulations of different ther-
apies that consider either a single drug or a pair, and with varying
durations of treatment. All therapies assume that the drugs enter the
tumour from the vasculature boundary region, and diffuse through the
surrounding tissue without affecting the healthy cells. Since TRAMP

0.015

0.01
Ez(x,t) (mMol/1)

0 0.005 0.02

Fig. 4. Probability of differentiation from S, to R, (blue dotted line) and differentiation
from R, to S, (orange full line).

mice start developing tumours around week seven or eight of their
lives, and that by week 12 the tumours are visible, we assume for these
simulations that they begin at week five of the TRAMP mice life cycle.
In each therapy, the simulation is run for five weeks before the drugs
are added in order to simulate the time required for the tumour to
be discovered (i.e., in the experimental setting a lump becomes visible
and/or can be felt by touch) and the treatments to begin.

As stated previously, we wish to consider the effectiveness of the
drugs, both individually and with enzalutamide in combination with
either cabazitaxel or everolimus. For the single-drug therapies, the
drugs are administered over a 12, 18 and 52 week period. The com-
binations are administered over the same periods, but in two different
ways which we refer to as “Then” therapy and “Alternating” therapy.
For “Then” therapies enzalutamide is given by itself for the first half
of the time period, with the other drug being administered over the
second half. With “Alternating” therapies the drugs are administered
alternately. For the cabazitaxel pair this means that enzalutamide is
given for a week, and the next week cabazitaxel is given during the
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middle of the week. For everolimus the drugs are administered on
alternate days, starting with enzalutamide. This is done to avoid any
toxic or pharmacokinetic interactions that could occur between the
drugs [41]. Appendix B provides detailed illustrations of the treatment
schedules for the various therapies.

3. Simulation process of the hybrid model

The model that we consider in this section is a multi-scale system
with drug diffusion, where each time step of the simulation begins with
solving the micro-environment PDEs. Because the disparity between the
time scales of the micro-environment and the CA is very large, the
changes in cells can be considered as adiabatic perturbations of the
micro-environments. For this reason, following the ideas used by Patel
et al. [42], the PDEs can be solved as elliptic boundary-value equations
on a coarse time-scale rather than as parabolic diffusion equations
explicit in time. This method does greatly increase the simulation
efficiency, but can introduce discrepancies in the simulation as all cells
react to changes in the micro-environment simultaneously. In order to
avoid that, the CA is advanced in a series of random subsets of CA
elements. This means that only a fraction, f < 1, of the CA elements
is updated at a time, and after each fraction is updated the PDEs are
solved again to determine the response of the micro-environment. This
process is repeated until all of the CA elements have been updated,
i.e. 1/f times. Patel et al. [42] found that there was no qualitative
difference in the CA as long as f < 0.2. Therefore, for all simulations
we considered f = 0.1. As the subsets are chosen randomly at each time
step, this prevents all cells from being updated either simultaneously or
in a spatially sequential manner. Given that, and that we have assumed
that healthy prostate cells and necrotic cells do not consume or produce
O, G and H, the micro-environment system (8) is different depending
on the cell present at site x. As such, the micro-environment system (8)
for S,. Sy R, and R, becomes

DCVZC =g, (26)
D;V?j =0, 27)

where ¢ = H, O, G, A, j = Ez, Cb, Ev and g, are defined in (9). For
healthy prostate and necrotic cells we take

D VZk =0, (28)

where k = H, O, G, Ez, Cb, Ev.

To avoid conflicts in occupying space during proliferation, cells look
at space availability with the current cell distribution as well as any
sites that have already been updated by previous subsets. This allows
space created by apoptosis or drug deaths to be used immediately, as
well as preventing two cells proliferating into a shared neighbour.

To perform the numerical simulations we used MATLAB 2022a with
the standard 5-point discretisation for the Laplacian operator.

4. Simulation results

The following simulations were carried out on a discretisation of
the square region 2 by a 100 x 100 grid, in which each grid cell
corresponds to an area 20 pm X 20 pm, chosen to be approximately the
size of a single tumour cell [30]. We assumed that PCa cells cannot
proliferate into the boundary region, and that oxygen, glucose and
hydrogen have Dirichlet boundary conditions of 0.014 mMol/#, 0.05
mMol/# and 7.2 pH, respectively. The drug boundary conditions are as
described above in Section 3 with the initial dose for each drug equal
to Ez* = 0.02 mMol/#, Cb* = 1.79 nMol/# and Ev* = 11.2 nMol/#
respectively. Initially a small cluster (3 x 3 grid sites) of S, cells is
placed in the centre of the grid, with the starting oxygen, glucose and
hydrogen concentration being the respective initial condition through-
out the domain. The simulation is then run for each therapy with
one complete update cycle of the CA corresponding to one day (the
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parameter values taken for all simulations are given in Table A.1). For
each 12 week therapy simulation the final cell distribution is illustrated,
as well as the total populations of the sensitive and resistant phenotypes
over time. For the 18 week therapies we show a comparison of the PCa
cell coverage as a percentage of pathological area against data from
Cerasuolo et al. [1]. We also consider the unrestricted growth of the
tumour without treatment, to use it as a benchmark for comparison
with the therapies.

As we have used stochastic elements throughout the CA, there is
variation between multiple simulations of the same therapy, with each
simulation having slight differences in tumour shape, coverage and cell
phenotypes. The cell distribution figures that we present provide typical
examples of those for the system undergoing each therapy. The main
results presented in the paper are collected from 1500 simulation runs:
10 treatment types (9 summarised in detail in Appendix B, plus a no-
treatment control) with 3 possible durations for each (12, Fig. B.1,
18, Fig. B.2, and 52 weeks, Fig. B.3), and 50 runs of each (with
different random number seeds) to account for stochasticity in the
random choices underlying the CA rules. The spatial distribution of
cell types differs in individual runs. We therefore plot the extreme
(minimum to maximum) values taken across all simulation runs against
time, and also 95% confidence intervals for the population mean of the
relevant quantities taken across all simulation runs against time. Doing
this reveals that the qualitative behaviour and indeed the quantities of
different cell types observed over time are both rather insensitive to
such stochastic effects.

4.1. 12 week therapies

In Fig. 5, we can see the dynamics of untreated prostate cells in
TRAMP mice, with a necrotic core forming at the centre of the tumour.
The model’s embedded stochasticity, which can be observed in the
irregular shape of the tumour growth, is very clear after 84 and 126
days of tumour growth, but it can already be appreciated at week 11
of the TRAMP mice life cycle (35 days of the simulation).

Introducing enzalutamide causes the majority of the cell population
to differentiate to the resistant phenotype, as seen in Fig. 6. We also
note that oxygen concentration gradients determine preferential cellu-
lar proliferation paths, with tumour cells inhabiting the regions closest
to the vasculature as they grow. After 12 weeks of therapy the tumour
has yet to reach the corners of the grid. From week six it is possible to
observe that small clusters of non-necrotic cells (between one and five
cells together) form in the centre of the grid.

In contrast, cabazitaxel has a more pronounced effect on the distri-
bution of the PCa cells, with it forming into a number of large clusters
after 12 weeks of therapy, with a minimal presence on the edge of the
vasculature, as seen in Fig. 7.

Fig. 8 shows the effect of everolimus on the tumour, with a final
cell distribution similar to that of the enzalutamide therapy, though,
as expected, little to no differentiation has occurred. We note that the
PCa cells cover a larger region near the vasculature at 12 weeks than
in Fig. 6(c), suggesting that everolimus is less effective at delaying the
growth of the PCa tumour.

Comparing the single drug therapies, cabazitaxel-only seems to be
the most effective over 12 weeks, resulting in a much curtailed cell
distribution in comparison to the other two, as well as a lower total
cell population. However, Fig. 9(b), (c) and (d) shows that for each
therapy the total tumour cell population is steadily increasing, though
at a much slower rate for cabazitaxel than the others, which suggests
that these therapies will not be effective in the long run. Note also that
for the enzalutamide-only therapy there is always a small population
of sensitive cells that survives, Fig. 9(b). This is most likely caused by
resistant cells switching to sensitive cells at a sufficient rate to replace
those lost to drug death and apoptosis.

For the “Then” therapies we observe similar behaviour after six
weeks of therapy as we do for the enzalutamide only therapy, as
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Fig. 5. Untreated PCa simulation over 119 days, at (a, left) 35 days, (b, middle) 77 days and (c, right) 119 days. The figure indicates the cell types: non-cancerous Prostate (P;
white), Sensitive-proliferating (Sp; dark blue), Sensitive-quiescent (Sq; light blue), Resistant-proliferating (Rp; dark red), Resistant-quiescent (Rq; light red), Necrotic (N; green), and
Boundary (B; grey).
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Fig. 6. Enzalutamide only, at (a, left) therapy start, (b, middle) 6 weeks of therapy and (c, right) 12 weeks of therapy.
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Fig. 7. Cabazitaxel only, at (a, left) therapy start, (b, middle) 6 weeks of therapy and (c, right) 12 weeks of therapy.
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Fig. 8. Everolimus only, at (a, left) therapy start, (b, middle) 6 weeks of therapy and (c, right) 12 weeks of therapy.
expected, since for the first six weeks all of these therapies have Fig. 10(c) shows that at the end of the “Then” cabazitaxel 12 week
enzalutamide only being given. therapy the tumour cells are organised in a few large clusters, though
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Fig. 9. The cell populations of the PCa phenotypes undergoing the single drug 12 week therapies. Blue indicates the sensitive phenotype and red indicates the resistant phenotype.
The outer (transparent/light) regions indicate the extreme range of values taken (minimum to maximum) over an ensemble of n = 50 separate simulation runs of the model
(with different random number seeds) for each treatment. The inner (solid/dark) regions indicate the 95% confidence intervals for the population mean across the runs (using the
t-distribution with n — 1 degrees of freedom) against time. A common vertical axis, fitted to the worst of the treatments, is used to facilitate comparisons within this figure and
with later figures. The inset in (a) shows the final (non-necrotic) cell population for the no-treatment control.
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Fig. 10. “Then” cabazitaxel 12 week therapy, at (a, left) therapy start, (b, middle) 6 weeks of therapy and (c, right) 12 weeks of therapy.

with a greatly decreased population in comparison to the cabazitaxel
(or enzalutamide) only therapy. We note that the sensitive pheno-
type is dominant in the cell population, which is to be expected in
an enzalutamide-deficient environment and with the effectiveness of
cabazitaxel at eliminating the resistant phenotype, as seen in Figs. 3(a)
and 4 respectively.

In comparison, the “Then” everolimus 12 week therapy presents
a cell distribution similar in shape, but smaller in size, to that of
everolimus-only at 12 weeks, as seen in Fig. 11(c). The major difference
is that there is a proportion of the cell population that is the resistant
phenotype, which highlights the relative ineffectiveness of everolimus
at eliminating the resistant cells.

While most of the therapies result in large regions of tumour cells,
the “Alternating” cabazitaxel therapy results in very small clusters

of tumour cells, as seen in Fig. 12(b) and (c). While this is a good
indicator that this therapy could result in a tumour free state, these
clusters could be small enough to be able to enter the vasculature
by traversing capillary size vessels and become seeds for metastases,
leading to serious complications [43,44].

The “Alternating” everolimus therapy is far more effective than the
“Then” everolimus therapy, with the cell distribution heavily curtailed
and the sensitive phenotype almost non-existent. As we can see in
Fig. 13 the remaining cells are predominantly in around four or five
large regions, with two reaching the vasculature, and a few small
clusters close to these regions.

We note that all of the therapies stop the formation of a necrotic
core, and that with all therapies the centre of the grid is mostly non-
cancerous. As the boundary region represents the vasculature that
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Fig. 11. “Then” everolimus 12 week therapy, at (a, left) therapy start, (b, middle) 6 weeks of therapy and (c, right) 12 weeks of therapy.
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Fig. 12. “Alternating” cabazitaxel 12 week therapy, at (a, left) therapy start, (b, middle) 6 weeks of therapy and (c, right) 12 weeks of therapy.
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Fig. 13. “Alternating” everolimus 12 week therapy, at (a, left) therapy start, (b, middle) 6 weeks of therapy and (c, right) 12 weeks of therapy.

provides the nutrients to the region, it is unsurprising that the PCa cells
survive and the tumour cell region migrates into the locations closest
to it. While the drugs are also introduced from the boundaries, their
micro-environment equations in (27) and (28) have harmonic solutions,
making a cell’s distance from the boundary not a factor in their survival
from drug death.

We observe that “Alternating” therapies and the “Then” cabazitaxel
therapy are more effective than the single drug therapies (Fig. 9)
at reducing the total cell population (Fig. 14). While the cabazitaxel
combination therapies have a lower final cell population than the
“Then” everolimus therapy, the cell population oscillates around the
doses, while the “Then” everolimus therapy is more uniform.

4.2. 18 Week therapies

No significant difference is observed in the untreated tumour after
a further six weeks of cell growth. Untreated PCa cells still develop a
necrotic core, while all of the therapies prevent the necrotic core from
forming. Increasing the duration of the single drug therapies causes the
cell populations to plateau for enzalutamide and everolimus, suggesting
that the effectiveness of the drugs at stopping the tumour growth is
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limited, and that the micro-environment conditions become the limiting
factor.

We note that the “Then” everolimus therapy has a much reduced
resistant cell population, and that the cell distribution is similar to that
of the everolimus-only therapy, Fig. 15(b) and (a) respectively. This
suggests that the effectiveness of the “Then” everolimus therapy is more
limited the longer it is used.

From Fig. 15(c) we see that the “Alternating” cabazitaxel therapy
still has clusters of PCa cells after the additional six weeks of therapy.
This suggests that the risk of metastases is present for both the 12 and
18 week therapies.

The other combination therapies are more effective than the single
drug therapies, but “Then” cabazitaxel and “Alternating” everolimus
both indicate an increase in tumour cell population over the respec-
tive 12 week therapies, though not as pronounced as the single drug
therapies (not shown).

To determine the accuracy of our simulations, the PCa cell coverage
was computed over the 18 week therapies and compared against the
data from TRAMP mice in [1]. As we see in Fig. 16, our simulations
fall within the natural variation observed in living organisms. These
graphs allow us to be confident that our simulations are reasonable
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Fig. 14. The cell populations of the PCa phenotypes undergoing the 12 week therapies. Blue indicates the sensitive phenotype and red indicates the resistant phenotype. The
outer (transparent/light) regions indicate the range of values taken (minimum to maximum) over an ensemble of n = 50 separate simulation runs of the model for each treatment.
The inner (solid/dark) regions indicate the 95% confidence intervals for the population mean across the runs, plotted against time. A common vertical axis is used to facilitate

comparisons.
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Fig. 15. Final cell distributions after 18 weeks of therapy: (a, left) Everolimus only, (b, middle) “Then” everolimus, (c, right) “Alternating” cabazitaxel.

approximations of the tumour’s behaviour, and as such the therapies we
considered can provide reasonable predictions of the tumour behaviour
in the short and long term.

4.3. Year long therapies

For the year long therapies we note that although the “Alternating”
cabazitaxel therapy appears capable of achieving a tumour-free state,
with the parameter values used in the model it leads to a suppressed but
persistent tumour population with sustained oscillations. For example,
the picture shown in Fig. 17(c), at the end of the final week of
treatment, might appear to suggest that the tumour-free state will be
reached with a short course of further treatment. However, Fig. 17(d)
from the start of the same week reveals the presence of clusters of
PCa cells that continue to oscillate in size as shown in Fig. 17(e).
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Simulations of an “enzalutamide with cabazitaxel” therapy (which is
used to calibrate the model) B.3(h), in which the boundary value
concentration of enzalutamide is kept constant throughout treatment,
does reach a tumour-free state, although stochastic effects lead to a
large variance in the time taken to reach the tumour-free state for
different runs and the treatment is unlikely to be suitable for clinical
use. Increasing the maximum boundary value concentration of cabazi-
taxel to Cb* = 1.85 nMol/# during the “alternating” therapy appears to
cause a bifurcation in the dynamics, typically resulting in a tumour-
free state before the end of the year-long therapy: Fig. 17(f) shows
95% confidence intervals for the mean tumour population across 50
simulation runs, 48% of which achieved a tumour-free state by week
26 of treatment, 80% by week 39, and 96% by week 52.

The other therapies do not produce such a result, with all of them
either maintaining the conditions reached already with the 18 week
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Fig. 16. Cell coverage percentage for different therapies against data (blue dots) from [1]. In each graph the circles are the data points, the outer (grey) region shows the extreme
range of values taken (minimum to maximum) across 50 simulation runs against time, and the inner solid (black) regions show the 95% confidence interval for the population

mean value computed across the runs plotted against time.
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Fig. 17. Final cell distributions after year long therapy for (a) “Then” cabazitaxel, (b) “Alternating” everolimus, and (c) “Alternating” cabazitaxel for which (d) shows the cell
distribution at the start of the final week of therapy and (e,f) show 95% confidence intervals for the mean of the tumour population over 50 simulation runs against time with
blue indicating the sensitive phenotype and red the resistant phenotype, with (f) showing the success of a higher-dosage version of the therapy in driving the mean towards zero

over the space of the 52 week therapy. For (f), 48% of the runs achieved a tumour-fr

ee state by week 26 of treatment, 80% by week 39, and 96% by week 52.
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Table A.1
Parameters for the simulations of the model, where references marked by * are model specific parameters and units marked by — indicate dimensionless quantities.

Param Definition Value Units Ref
Sy Cabazitaxel maximum mortality probability for sensitive cells 0.81 - [1]
Sgy Everolimus maximum mortality probability for sensitive cells 0.268 - [1]
g, Enzalutamide efficacy on sensitive cells 7.45 ¢/mMol [1]
ep Cabazitaxel degradation rate 0.25 1/day [1]
Ny Everolimus degradation rate 0.8 1/day [1]
g, Enzalutamide degradation rate 0.17 1/day [1]
Acy Cabazitaxel efficacy on resistant cells 0.63 ¢ /nMol [1]
Agy Everolimus maximum mortality probability for resistant cells 0.454 - [1]
Mg, Enzalutamide maximum mortality probability for resistant cells 0.308 - [1]
a, Half saturation level for sensitive to resistant switching 0.0017 mMol/? [1]
a, Half Saturation level for resistant to sensitive switching 0.0008 mMol/¢ [1]
ATP, ATP threshold for apoptosis 0.3 mMol/# [30]
ATP, ATP threshold for quiescence 0.8 mMol/# [30]
Dey, Cabazitaxel diffusion rate 800 pm? /s [45]
Dg, Everolimus diffusion rate 800 pm? /s [45]
Dg, Enzalutamide diffusion rate 800 pm? /s [45]
Dg Glucose diffusion rate 500 um? /s [30]
Dy Hydrogen ion diffusion rate 1080 pm? /s [30]
D, Oxygen diffusion rate 1820 pm? /s [30]
k, Apoptosis stiffness coefficient 0.1 x 103 ¢/mMol *
ke Cabazitaxel half-maximum mortality coefficient for sensitive cells 0.45 nMol/? [1]
kgyr Everolimus half-maximum mortality coefficient for resistant cells 10.1 nMol/¢ [1]
kgys Everolimus half-maximum mortality coefficient for sensitive cells 5.04 nMol/# [1]
kg, Enzalutamide half-maximum mortality coefficient for resistant cells 0.0563 mMol/¢ [1]
kg Half-Maximum glucose concentration for consumption 0.04 mMol/# [30]
ki Half-maximum hydrogen ion concentration 25x 1074 - [30]
ky Necrotic stiffness coefficient 2.5 x 103 ¢/mMol *
ko Half-maximum oxygen concentration for consumption 0.005 mMol/# [30]
k, Probability of random mutation 0.0002 - [10]
Ky Maximum proliferation rate for resistant cells 0.907 1/day [1]
K Maximum proliferation rate for sensitive cells 1.15 1/day [1]
k, Quiescence stiffness coefficient 0.07 x 103 #/mMol *

ny Limiting factor on the impact of hydrogen 0.4566 - [39]
Oy Necrotic threshold 0.002 mMol/# *
Pir Fitness coefficient for resistant cells 0.02 - [1]
Dis Fitness coefficient for sensitive cells 0.0146 - [1]
Py Half maximum oxygen coefficient for proliferation 7.29 x 1073 mMol/? [39]
D3 Half maximum glucose coefficient for proliferation 1.76 x 1072 mMol/? [39]
Pe, Glucose metabolism multiplier for resistant cells 4 - [1]
Py, Glucose metabolism multiplier for sensitive cells 1.3 - [1]
Vor Maximum oxygen consumption for resistant cells 0.0216 mMol/?¢ /s [1]
Vos Maximum oxygen consumption for sensitive cells 0.0288 mMol/¢/s [1]

therapies, or resulting in worse conditions in the case of the “Then”
cabazitaxel and “Alternating” everolimus therapies, Figs. 17(a) and
17(b) respectively.

5. Discussion

In this paper we proposed a novel hybrid CA to simulate and
investigate the effectiveness of various chemotherapy drugs on PCa.
We assumed that the differentiation of the PCa cells was motivated
by the concentration of the first chemotherapy drug we considered,
enzalutamide, and by random mutation. This differentiation would be
to a phenotype resistant to enzalutamide, but that was more vulnerable
to other chemotherapy drugs [1]. Another key factor in our model
was the use of particular probability functions in the CA rules, which
helped to convey some of the differences seen between individual
tumours [26]. Through numerical simulations we showed some of
the possible prognoses resulting from the therapies, having considered
single drug use, alternating doses of pairs of drugs and enzalutamide-
only followed by another drug for a given period. These simulations
also considered several different time frames, so that we could assess
the effectiveness of both short-term and long-term treatment plans
following particular patterns.

From the short term simulations (12 to 18 week therapies) we can
see that cabazitaxel is the most effective of the single drug therapies, re-
sulting in a lower total tumour cell population, even though it oscillates
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with the two weeks between doses. Both enzalutamide and everolimus
result in larger cell populations, but the population is less volatile. Most
of the combination therapies are more effective than the single drug
therapies, with only “Then” everolimus 18 week therapy (Fig. 15(b))
having a larger PCa tumour cell population than the cabazitaxel only
therapy, while the “Alternating” cabazitaxel 18 week therapy results in
a steadily decreasing PCa cell population that leads almost to extinction
in the simulation as shown in Fig. 15(c).

The year long therapies show, for most of our considered therapies,
that long-term use is actually less effective than the results of short-term
use might suggest, and either the treatment maintains the condition
shown under the 18 week therapy, or the PCa cells continue to grow.
The only exception is the “Alternating” cabazitaxel therapy, which
consistently leads to a tumour-free state before the end of the year long
therapy if given at a slightly higher dosage (Fig. 17(f)), but otherwise
tends to result in sustained small oscillations (Fig. 17(e)). While these
results are encouraging, the cell distributions of the “Alternating”
cabazitaxel 12 week and 18 week therapies (Figs. 12 and 15(c) respec-
tively) show very small clusters of PCa cells. These clusters are small
enough to allow metastases to occur [44]. Therefore while this therapy
is encouraging in the long term, care must be taken that short term
issues do not arise. As each treatment has different quality-of-life con-
cerns for the patients, we conclude that the enzalutamide-cabazitaxel
alternating therapy could be used as a long term strategy for combating
PCa, but that further research and clinical studies must be considered
to counter possible metastases.



A. Burbanks, M. Cerasuolo, R. Ronca et al.

Mathematical Biosciences 355 (2023) 108940

= 0.02 ~0.02 = 0.02
< 0.01 = 0.01 = 0.01
L S L
=15 =15 <15
Zo3 Boj Zo3
=93 =31 =93
e K 3 W
5 5 % 5 5 5
= = =
=0 = 0 = 01
0 50 100 0 50 100 0 50 100
t (days) t (days) t (days)
(a) “EZ”. (b) “Cb77' (C) “EV”.
~0.02 ~0.02 ~0.02
“50.01 —L “50.01 \ “50.01 W
= = =
=0 =0 = o
=15 =15 =15
= 1 =z 1 = 1
£og) £os £og)
=10 =10 =10
5 5 5 5 5 5
& = &
o = oﬂ o
0 50 100 0 50 100 0 50 100
t (days) t (days) t (days)
(d) “Ez then Cb”. (e) “Ez then Ev”. (f) “Ez alt Cb”.
Soo M Soo Soo
5 0.01 “50.01 5 0.01
= = =
=~ ol = 90 = 0
=15 =15 =15
Zod Zod Zog
=93 =31 =93
3 W ¥ z W
> 5 = 5 5 5
= = =
= 0] =9 = ol
0 50 100 0 50 100 0 50 100
t (days) t (days) t (days)

(g) “Ez alt Ev”.

(h) “Ez with Cb”.

(i) “Ez with Ev”.

Fig. B.1. Drug treatment schedules for 12-week therapies, each showing the boundary conditions fg,(r) (top; red in colour copy), fc,(r) (middle; green in colour copy), and
f&y() (bottom; blue in colour copy): (a) Enzalutamide only, (b) Cabazitaxel only, (c) Everolimus only, (d) Enzalutamide then Cabazitaxel, (e) Enzalutamide then Everolimus, (f)
Enzalutamide alternating Cabazitaxel, (g) Enzalutamide alternating Everolimus, (h) Enzalutamide with Cabazitaxel, (i) Enzalutamide with Everolimus.

We were able to compare the 18 week therapy simulations against
the TRAMP mice data from [1], which allowed us to consider the
accuracy of our simulations, all of which were well within the natural
variations expected in vivo. We believe this means that our simulations
are a good approximation for the PCa behaviour.

The model provides several avenues for further study. We have
assumed that the healthy prostate cells have minimal impact on the
micro-environment equations, and are not affected by the chemother-
apy drugs introduced. Introducing CA rules that would govern how
the healthy prostate cells behave as well as considering their inter-
actions with the micro-environment could allow for greater accuracy
in the model [21,46]. Another assumption in the model is that the
vasculature is only present as a boundary region; it could instead be
randomly scattered throughout the grid with a suitable distribution
chosen to better represent the capillary network and periodic boundary
conditions. Alternatively image analysis could be used to help develop
mathematical models of tumour vasculature and angiogenesis [47].
This would provide a more faithful representation of prostate tissue
composition, and could also lead to incorporating angiogenesis, in
addition to allowing larger grids to be investigated and mitigating
geometrical effects [21,31,48].
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While we have considered three drugs in this model, there are many
more that are used in ongoing clinical trials, and the model could
be expanded to include them, especially those that are already being
used in combination with the three considered in our study, such as
docetaxel and abiraterone, and optimal control techniques could be
used to design the best therapeutic strategy to eliminate the tumour
from the organism [41,49]. We could also consider other combination
therapies, such as all three drugs provided alternately, or cabazitaxel
or everolimus first, then enzalutamide. However, one should note that
drugs and drug combinations need to be carefully analysed in terms of
their toxicity towards healthy cells, and that care is taken to ensure that
no harm is done to the test subject. Alternative delivery mechanisms,
such as direct injection to the tissue rather than diffusion from the
vasculature, could also be considered. Also, as further clinical trials
are performed, the pharmacokinetic pathways of these drugs are better
understood, and the possible drug-drug interactions are discovered,
the equations that govern the pharmacokinetic and the probability
functions that govern drug death should be updated and improved to
better replicate the real cellular behaviour [50,51]. Regarding the
pharmacokinetic, another limitation of the model is related to the
assumption that an adaptive therapy takes place, which disregards
the possibility of drug accumulation. While adaptive therapies are
possible and have attracted the attention of researchers in recent
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Fig. B.2. Drug treatment schedules for 18-week therapies, each showing the boundary conditions fg,(r) (top; red in colour copy), fc,(r) (middle; green in colour copy), and
fe () (bottom; blue in colour copy): (a) Enzalutamide only, (b) Cabazitaxel only, (c) Everolimus only, (d) Enzalutamide then Cabazitaxel, (e) Enzalutamide then Everolimus, (f)
Enzalutamide alternating Cabazitaxel, (g) Enzalutamide alternating Everolimus, (h) Enzalutamide with Cabazitaxel, (i) Enzalutamide with Everolimus.

years [52], they are not the most usual form of treatments as in
the majority of cases patients are repeatedly injected with fixed-dose
injections that lead to an accumulation of drugs in the blood flow and
do not allow to maintain a target drug concentration as considered
in the model. Finally, we would like to observe that the model is
based on experiments on mice and is highly simplified overall; further
work will be needed to obtain a mathematical modelling framework
able to support research in humans and clinical trials. First of all,
we would like to underline that the choice of a 2D approximation
(tumour slice) could be extended by considering 3D tissue volumes with
a more realistic vasculature geometry [19,53]. Secondly, since future
models should extend to human tumours, this raises the issue of model
parameterisation. Given the high number of parameters, we believe
that the first step will be to select, through mathematical techniques
such as sensitivity analysis [54], those few parameters that play a major
role in the tumour growth and focus our attention on patient-specific
simulations and therapies [55].
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Appendix A. Model parameters
See Table A.1.
Appendix B. Treatment schedules

Figs. B.1-B.3 demonstrate the drug schedules (showing the bound-
ary conditions) for various 12, 18, and 52-week therapies, respectively.
Therapies (h,i) are used to help calibrate the model.
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Fig. B.3. Drug treatment schedules for 52-week therapies, each showing the boundary conditions fy,(r) (top; red in colour copy), fc,(f) (middle; green in colour copy), and
fey() (bottom; blue in colour copy): (a) Enzalutamide only, (b) Cabazitaxel only, (c) Everolimus only, (d) Enzalutamide then Cabazitaxel, (e) Enzalutamide then Everolimus, (f)
Enzalutamide alternating Cabazitaxel, (g) Enzalutamide alternating Everolimus, (h) Enzalutamide with Cabazitaxel, (i) Enzalutamide with Everolimus.
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