138 research outputs found

    Diabetes Causes Bone Marrow Autonomic Neuropathy and Impairs Stem Cell Mobilization via Dysregulated p66Shc and Sirt1

    Get PDF
    Diabetes compromises the bone marrow (BM) microenvironment and reduces circulating CD34 + cells. Diabetic autonomic neuropathy (DAN) may impact the BM, because the sympathetic nervous system (SNS) is prominently involved in BM stem cell trafficking. We hypothesize that neuropathy of the BM affects stem cell mobilization and vascular recovery after ischemia in diabetes. We report that, in patients, cardiovascular DAN was associated with fewer circulating CD34 + cells. Experimental diabetes (STZ and Ob/Ob ) or chemical sympathectomy in mice resulted in BM autonomic neuropathy, impaired Lin - cKit + Sca1 + (LKS) cell and endothelial progenitor cells (EPC, CD34 + Flk1 + ) mobilization and vascular recovery after ischemia. DAN increased expression of p66Shc and reduced expression of Sirt1 in mice and humans. p66Shc KO in diabetic mice prevented DAN in the BM, and rescued defective LKS cell and EPC mobilization. Hematopoietic Sirt1 KO mimicked the diabetic mobilization defect, while hematopoietic Sirt1 overexpression in diabetes rescued defective mobilization and vascular repair. Through p66Shc and Sirt1 , diabetes and sympathectomy elevated the expression of various adhesion molecules, including CD62L . CD62L KO partially rescued the defective stem/progenitor cell mobilization. In conclusion, autonomic neuropathy in the BM impairs stem cell mobilization in diabetes with dysregulation of the lifespan regulators p66Shc and Sirt1

    Downregulation of the Longevity-Associated Protein Sirtuin 1 in Insulin Resistance and Metabolic Syndrome: Potential Biochemical Mechanisms

    Get PDF
    OBJECTIVE: Sirtuins (SIRTs) are NAD(+)-dependent deacetylases that regulate metabolism and life span. We used peripheral blood mononuclear cells (PBMCs) to determine ex vivo whether insulin resistance/metabolic syndrome influences SIRTs. We also assessed the potential mechanisms linking metabolic alterations to SIRTs in human monocytes (THP-1) in vitro. RESEARCH DESIGN AND METHODS: SIRT1-SIRT7 gene and protein expression was determined in PBMCs of 54 subjects (41 with normal glucose tolerance and 13 with metabolic syndrome). Insulin sensitivity was assessed by the minimal model analysis. Subclinical atherosclerosis was assessed by carotid intima-media thickness (IMT). In THP-1 cells exposed to high glucose or fatty acids in vitro, we explored SIRT1 expression, p53 acetylation, Jun NH(2)-terminal kinase (JNK) activation, NAD(+) levels, and nicotinamide phosphoribosyltransferase (NAMPT) expression. The effects of SIRT1 induction by resveratrol and of SIRT1 gene silencing were also assessed. RESULTS: In vivo, insulin resistance and metabolic syndrome were associated with low PBMC SIRT1 gene and protein expression. SIRT1 gene expression was negatively correlated with carotid IMT. In THP-1 cells, high glucose and palmitate reduced SIRT1 and NAMPT expression and reduced the levels of intracellular NAD(+) through oxidative stress. No effect was observed in cells exposed to linoleate or insulin. High glucose and palmitate increased p53 acetylation and JNK phosphorylation; these effects were abolished in siRNA SIRT1-treated cells. Glucose- and palmitate-mediated effects on NAMPT and SIRT1 were prevented by resveratrol in vitro. CONCLUSIONS: Insulin resistance and subclinical atherosclerosis are associated with SIRT1 downregulation in monocytes. Glucotoxicity and lypotoxicity play a relevant role in quenching SIRT1 expression

    Angiotensin converting enzyme gene polymorphism is associated with severity of coronary artery disease in men with high total cholesterol levels

    Get PDF
    This study examines whether renin-angiotensin-aldosterone system gene polymorphisms: ACE (encoding for angiotensin converting enzyme) c.2306-117_404 I/D, AGTR1 (encoding for angiotensin II type-1 receptor) c.1080*86A>C and CYP11B2 (encoding for aldosterone synthase) c.-344C>T are associated with the extension of coronary atherosclerosis in a group of 647 patients who underwent elective coronary angiography. The extension of CAD was evaluated using the Gensini score. The polymorphisms were determined by PCR and RFLP assays. The associations between genotypes and the extent of coronary atherosclerosis were tested by the Kruskal-Wallis test, followed by pairwise comparisons using Wilcoxon test. The population has been divided into groups defined by: sex, smoking habit, past myocardial infarction, BMI (>, ≤ 25), age (>, ≤ 55), diabetes mellitus, level of total cholesterol (>, ≤ 200 mg/dl), LDL cholesterol (>, ≤ 130 mg/dl), HDL cholesterol (>, ≤ 40 mg/dl), triglycerides (>, ≤ 150 mg/dl). Significant associations between the ACE c.2306-117_404 I/D polymorphism and the Gensini score in men with high total cholesterol levels (PKruskal-Wallis = 0.008; Padjusted = 0.009), high level of LDL cholesterol (PKruskal-Wallis = 0.016; Padjusted = 0.028) and low level of HDL cholesterol (PKruskal-Wallis = 0.04; Padjusted = 0.055) have been found. No association between the AGTR1 c.1080*86A>C and CYP11B2 c.-344C>T and the Gensini score has been found. These results suggest that men who carry ACE c.2306-117_404 DD genotype and have high total cholesterol, high LDL cholesterol and low HDL cholesterol levels may be predisposed to the development of more severe CAD

    2-Deoxy-D-Glucose Treatment of Endothelial Cells Induces Autophagy by Reactive Oxygen Species-Mediated Activation of the AMP-Activated Protein Kinase

    Get PDF
    Autophagy is a cellular self-digestion process activated in response to stresses such as energy deprivation and oxidative stress. However, the mechanisms by which energy deprivation and oxidative stress trigger autophagy remain undefined. Here, we report that activation of AMP-activated protein kinase (AMPK) by mitochondria-derived reactive oxygen species (ROS) is required for autophagy in cultured endothelial cells. AMPK activity, ROS levels, and the markers of autophagy were monitored in confluent bovine aortic endothelial cells (BAEC) treated with the glycolysis blocker 2-deoxy-D-glucose (2-DG). Treatment of BAEC with 2-DG (5 mM) for 24 hours or with low concentrations of H2O2 (100 µM) induced autophagy, including increased conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II, accumulation of GFP-tagged LC3 positive intracellular vacuoles, and increased fusion of autophagosomes with lysosomes. 2-DG-treatment also induced AMPK phosphorylation, which was blocked by either co-administration of two potent anti-oxidants (Tempol and N-Acetyl-L-cysteine) or overexpression of superoxide dismutase 1 or catalase in BAEC. Further, 2-DG-induced autophagy in BAEC was blocked by overexpressing catalase or siRNA-mediated knockdown of AMPK. Finally, pretreatment of BAEC with 2-DG increased endothelial cell viability after exposure to hypoxic stress. Thus, AMPK is required for ROS-triggered autophagy in endothelial cells, which increases endothelial cell survival in response to cell stress

    Mechanistic perspectives of calorie restriction on vascular homeostasis

    Full text link

    Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens

    Get PDF
    Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection
    corecore