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Diabetes Causes Bone Marrow
Autonomic Neuropathy and
Impairs Stem Cell Mobilization
via Dysregulated p66Shc

and Sirt1

Diabetes compromises the bone marrow (BM)
microenvironment and reduces the number of
circulating CD34" cells. Diabetic autonomic
neuropathy (DAN) may impact the BM, because the
sympathetic nervous system is prominently involved
in BM stem cell trafficking. We hypothesize that
neuropathy of the BM affects stem cell mobilization
and vascular recovery after ischemia in patients with
diabetes. We report that, in patients, cardiovascular
DAN was associated with fewer circulating CD34"
cells. Experimental diabetes (streptozotocin-induced
and ob/ob mice) or chemical sympathectomy in
mice resulted in BM autonomic neuropathy,
impaired Lin"cKit*Sca1* (LKS) cell and endothelial
progenitor cell (EPC; CD34*Flk1*) mobilization, and
vascular recovery after ischemia. DAN increased
the expression of the 66-kDa protein from the src
homology and collagen homology domain (p66Shc)
and reduced the expression of sirtuin 1 (Sirt1) in
mice and humans. p66Shc knockout (KO) in
diabetic mice prevented DAN in the BM, and
rescued defective LKS cell and EPC mobilization.
Hematopoietic Sirt1 KO mimicked the diabetic

mobilization defect, whereas hematopoietic Sirt1
overexpression in diabetes rescued defective
mobilization and vascular repair. Through p66Shc
and Sirt1, diabetes and sympathectomy elevated
the expression of various adhesion molecules,
including CD62L. CD62L KO partially rescued the
defective stem/progenitor cell mobilization. In
conclusion, autonomic neuropathy in the BM impairs
stem cell mobilization in diabetes with dysregulation
of the life-span regulators p66Shc and Sirt1.
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Diabetes reduces the availability of bone marrow (BM)-
derived circulating angiocompetent CD34" cells, espe-
cially in the presence of chronic vascular complications
(1,2). This is believed to represent a risk factor for ad-
verse outcomes, as a low CD34" cell count is associated
with incident cardiovascular events (3). Recently, the BM
has emerged as a previously neglected target of hyper-
glycemic damage in experimental and human diabetes,
with features of microangiopathy and niche dysfunction
(4-7). As a result of BM remodeling, mobilization of
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stem and progenitor cells is impaired in diabetic animals
and humans (7-10). Since mobilization of BM-derived
stem/progenitor cells contributes to angiogenesis and
endothelial repair (11,12), such stem cell “mobilopathy”
(13) is expected to promote cardiovascular disease in
diabetes.

The sympathetic nervous system (SNS) is prominently
involved in BM niche function (14) and stem cell traf-
ficking is regulated by catecholaminergic neuro-
transmitters (15,16). Recently, it has also been
demonstrated that BM denervation strongly contributes
to chemotherapy-induced myelotoxicity (17). Diabetic
patients often experience autonomic neuropathy, which
is characterized by pauperization of SNS fibers in mul-
tiple organs (18-20). Thus, we herein hypothesize that
diabetic autonomic neuropathy (DAN) can affect BM
function and stem cell mobilization. Starting from the
observation that patients with DAN have a marked
pauperization of peripheral blood (PB) CD34" cells, we
used several experimental models and conditions to
demonstrate that autonomic neuropathy in the BM is
causally linked to impaired stem cell mobilization in di-
abetes, which is associated with defective reperfusion
after ischemia. Our data show that denervation in the
diabetic BM is mediated by the 66-kDa protein from the
src homology and collagen homology domain (p66Shc)
and that impaired mobilization relies on sirtuin 1 (Sirt1)
dysregulation, both of which are therefore potential
targets to restore BM cell-mediated vascular repair.

RESEARCH DESIGN AND METHODS
Patients

The protocol was approved by the Ethics Committee of
the University Hospital of Padova, and experiments
were conducted in accordance with the Declaration of
Helsinki, as revised in 2000. Patients were recruited at
the diabetes outpatient clinic of the University Hospital
of Padova. All consecutive type 1 diabetes (T1D) or type 2
diabetes (T2D) patients aged 20-90 years and un-
dergoing autonomic neuropathy tests were eligible, pro-
vided they were clinically stable and free from exclusion
criteria (recent acute disease or infection, trauma, or
surgery; uncontrolled hypertension or hyperglycemia,
prevalent hypoglycemia; immunological disorders, organ
transplantation, or immunosuppression; pregnancy and
lactation). The following data were recorded: age, sex,
type of diabetes and disease duration, HbA;. level, BMI,
waist circumference, smoking habit, systolic and diastolic
blood pressure, history of hypertension and use of anti-
hypertensive medications, resting heart rate, lipid profile,
albumin/creatinine excretion ratio, diabetes complica-
tions, and medications. Diabetic nephropathy was de-
fined as a urinary albumin/creatinine ratio >30 mg/g or
an estimated glomerular filtration rate <60 mL/min/
1.73 m”. Coronary artery disease was defined as a history
of myocardial infarction or angina, confirmed by coro-
nary artery angiography or a myocardial stress test.
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Peripheral arterial disease was defined as a history of
claudication or rest pain with evidence of stenosis of leg
arteries upon invasive or noninvasive examination. Ce-
rebrovascular disease was defined as a history of stroke
or evidence of >30% carotid stenosis upon ultrasound
examination. Diagnosis of DAN was performed according
to standard interpretation of R-R interval variations
during a change from lying to standing, deep breathing,
and Valsalva maneuver, as well as according to the degree
of orthostatic hypotension. Age-specific thresholds were
used to define pathological vs. normal DAN tests.

Animals

All procedures were approved by the local ethics com-
mittee and from the Italian Ministry of Health. Ex-
periments were conducted according to the National
Institutes of Health Principles of Laboratory Animal Care.
Vav1-Sirt1~’~ (generated by crossing Vav1“*"* mice with
Sirt15°P % mice), Vav1-Sirt1™® (generated by crossing
Vav1™®*Sirt1441* with Sirt1%*™*"), and Vav1-YPF
mice were bred at the external mouse facilities of the
University of Frankfurt (mfd Diagnostics GmbH). Sell ™~
mice were bred at the mouse facilities of the Institut fur
Labortierkunde, University of Zurich (Zurich, Switzer-
land). Sell ”~ mice were generated by Richard Hynes,

a Howard Hughes Medical Institute Investigator at the
Massachusetts Institute of Technology (Cambridge, MA).
p66Shc~’~ and ob/ob p66Shc /™ animals were bred at the
animal facility of the University of Padova. The ob/ob
mice were from The Jackson Laboratory (Bar Harbor,
ME). Age-matched wild-type animals were obtained from
the in-house colony of the animal facility of the Venetian
Institute of Molecular Medicine (Padova, Italy). All ani-
mals were on a C57BL/6 background. Diabetes was in-
duced with a single intraperitoneal injection of 150
mg/kg streptozotocin (STZ) (Sigma-Aldrich, St. Louis, MO)
in citrate buffer 50 mmol/L, pH 4.5. Blood glucose was
measured with Glucocard G-meter (Menarini, Florence,
Italy); animals with blood glucose levels =300 mg/dL in
at least two measurements within the first week were
classified as diabetic and were housed for 4 weeks with
feeding and drinking ad libitum before performing
experiments. In a separate set, animals were killed at
week 1, 2, and 3 after STZ treatment for a time-course
analysis (n = 4-5/group). For SNS disruption, animals
received three intraperitoneal injections of 100 mg/kg
6-hydroxydopamine (6-OHDA; Tocris Bioscience, Bristol,
UK), which destroys sympathetic neurons through oxi-
dative stress and other mechanisms. Animals were housed
for 4 weeks before a second round of injections with two
doses of 6-OHDA (100 mg/kg on day 0, 250 mg/kg on
day 2), and experiments were started on day 5.

Hind-Limb Ischemia

Animals were sedated with 10 mg/kg zolazepam/
thylamine (Zoletil; Virbac, Nice, France) and 7 mg/kg
xylazine (Xilor; Bio98 Srl, Milan, Italy). The femoral artery
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and the vein were surgically dissected from the femoral
nerve, then cauterized with low-temperature cautery, and
excised between inguinal ligament and hackle. Fifteen days
after surgery, we measured hind-limb microvascular perfu-
sion with the Periscan-Pim II Laser Doppler System (Perimed
AB, Jarfilla, Sweden). Each measure was repeated five times.

Mobilization Assays and Flow Cytometry

Progenitor cell levels were quantified in PB after pe-
ripheral ischemia or after 4 days of subcutaneous in-
jection of 200 pg/kg/day human recombinant
granulocyte colony-stimulating factor (G-CSF) (Fil-
grastim; Roche, Basel, Switzerland). Based on a pre-
liminary analysis of the kinetics of endothelial progenitor
cells (EPCs) and Lin™ cKit"Scal®™ (LKS) cells after ische-
mia, EPC levels peaked at day 3 after ischemia, and LKS
cell levels peaked at day 14. Therefore, these time points
were used for all subsequent analyses. AMD3100 (Tocris
Bioscience) was administered intraperitoneally at 6 mg/kg,
and mobilization was assessed after 4 h. Desipramine
treatment (10 mg/kg i.p.; Tocris Bioscience) was started
4 days before G-CSF treatment and continued for the

4 days of G-CSF treatment. PB was collected at baseline
and after mobilization. One hundred fifty microliters of
PB was stained with a rat anti-mouse allophycocyanin
lineage cocktail (BD, Franklin Lakes, NJ), phycoerythrin
rat anti-mouse Sca-1 (Ly6A/E; BD) and fluorescein iso-
thiocyanate rat anti-mouse cKit (BD) to quantify LKS
cells or with Alexa Fluor 647 rat anti-mouse CD34 (BD)
and Alexa Fluor 488 anti-mouse Flk-1 (BioLegend, San
Diego, CA) to quantify endothelial-committed progeni-
tors. CD62L (1-selectin) expression on BM LKS cells was
performed by staining 10° nonfractioned BM cells with
LKS antibodies and PerCp Cy5.5 anti-Mouse CD62L
(BD). A total of 250,000 events were acquired for each
analysis, and the level of progenitor cells was expressed
as the number of positive events per 1,000,000 total
events. Data were acquired using a FACSCalibur in-
strument (BD Biosciences, San Jose, CA) and analyzed
with FlowJo X (Tree Star Inc., Ashland, OR). For quan-
tification of circulating stem cells in humans, we stained
150 wL of freshly collected PB with a phycoerythrin-
conjugated anti-human CD34 monoclonal antibody (BD)
and gated CD34" cells in the mononuclear cell fraction.
CD34" cell count was expressed either as the number of
events per 10° total events or cells per milliliter by
multiplying the fractional CD34" cell count by white
blood cells obtained from the automated hemocytometer.

Histology

Adductor femoris longus muscles were frozen in iso-
pentane cooled in liquid nitrogen immediately after dis-
section. Muscles were then stored at —80°C for further
analysis. Muscle sections were incubated with a
DyLight594-conjugated Isolectin B4 (Bandeiraea sim-
plicifolia, 1:100; Vector Laboratories) and costained with
Oregon Green-conjugated wheat-germ agglutinin (1:400;
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Invitrogen) to allow identification of capillaries and
muscle fibers. Nuclei were counterstained with Hoechst
33258 (Sigma-Aldrich). Femurs were fixed for 24 h in 4%
paraformaldehyde at 4°C, washed with PBS, and then
decalcified by incubation with 5% formic acid for 2 days
at 4°C. Demineralized femurs were then covered with
OCT embedding medium and frozen in liquid nitrogen.
Ten-micrometer-thick longitudinal femur or transversal
muscle sections were obtained with a Leica CM1950
cryostat. Femur sections were fixed in 4% para-
formaldehyde and incubated with tyrosine hydroxylase
antibody overnight at 4°C (rabbit polyclonal antibody,
1:100, AB152; Millipore). A mock incubation, without
primary antibody, was performed in parallel. Images were
acquired with a Leica DM5000B microscope equipped
with a Leica DFC300 FX charge-coupled device camera,
and were processed with ImageJ software (National
Institutes of Health). Ten random X20 magnification
pictures were obtained from each muscle sample.

In Vitro Experiments

Human PB mononuclear cells (PBMCs) were obtained
from healthy donors and separated by gradient centri-
fugation with Histopaque-1077 (Sigma-Aldrich). A total
of 107 cells/well were plated in a six-well culture plate
(BD) with RPMI 1640 medium supplemented with 10%
FBS and 1% penicillin/streptomycin/glutamine. Iso-
proteronol (Sigma-Aldrich) was added for 48 h. Then
cells were collected and lysed for gene expression analy-
sis. To test chemical toxicity, BM cells from control mice
were incubated for 1 h with STZ and 6-OHDA, followed
by 24 h of recovery at 37°C 5% CO, with RPMI 1640 sup-
plemented with 10% FBS and 1% penicillin/streptomycin/
glutamine, at concentrations that are supposed to be
achieved in vivo in mice. Live early and late apoptotic and
necrotic cells (total BM cells or gated CD34" cells) were
quantified by flow cytometry staining with propidium io-
dide and Annexin-V (BD). Hematopoietic colonies were
grown from unfractioned BM cells and quantified using the
MethoCult system (StemCells Inc., Vancouver, BC, Canada).

Molecular Biology

After mice were killed, bones were harvested, cleaned of
debris, and flushed with ice-cold PBS; cells were collected
through a 40-pm sterile filter, total RNA was extracted
using the RNeasy kit (Qiagen), and RNA was quantified
using a Nanodrop Spectrometer (Thermo Fisher Scien-
tific). Four hundred nanograms of RNA were reverse-
transcribed to ¢cDNA using the First-Strand cDNA Syn-
thesis Kit (Invitrogen). Duplicates of sample cDNA were
then amplified on the 7900HT Fast Real-Time PCR Sys-
tem (Applied Biosystems) using the Fast SYBR Green RT-
PCR kit (Applied Biosystems) in 96-well plates (Applied
Biosystems). Expression data of selected genes were
normalized against housekeeping genes and were ana-
lyzed using the 2044 method. Primer sequences are
reported in Supplementary Table 3.
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Statistical Analysis

Data are expressed as the mean * SE or percentage.
Comparison between two or more groups was performed
using Student t test or ANOVA (for normal variables),
and with Mann-Whitney U test and Kruskal-Wallis test
(for non-normal variables). For human studies, a multi-
variable analysis was run to detect the independent effect
of DAN: the CD34" cell count was the dependent vari-
able, and clinical characteristics that were different at
univariate analysis in Table 1 were explanatory in-
dependent variables. Statistical significance was accepted
at P < 0.05.

RESULTS

Autonomic Neuropathy Impairs BM Stem Cell
Mobilization in Diabetes

First, we found that the coexistence of multiple patho-
logic cardiovascular autonomic tests used to diagnose
DAN was associated with a progressive reduction of
CD34" cells in PB of diabetic patients (Fig. 14 and B).
Independent of confounders, patients with DAN had

a 40% reduction in PB CD34" cells compared with DAN-
free patients (Fig. 1C and D, Table 1, and multivariate
analysis in Supplementary Table 1). A breakdown analy-
sis by DAN test showed trend reductions of PB CD34"
cells in the presence of the alteration of each of the au-
tonomic function tests (Fig. 1E and F). These data sug-
gest that autonomic neuropathy in diabetic patients
reduces the number of circulating CD34" cells, which
have been previously shown to exert proangiogenic ac-
tivity in vivo (21), that their levels are informative of
the BM status (8) and predict future cardiovascular
events (22).

Next, we report that experimental T1D induced by
STZ caused a marked reduction in tyrosine-hydroxilase”
(Tyr-OH") SNS fibers in the BM. This was equal to ~80%
of Tyr-OH staining reduction obtained by chemical
sympathectomy with 6-OHDA. STZ is considered to exert
little or no myelosuppression because it enters the cells
via glucose transporters (23). However, to rule out that
BM sympathectomy was attributable to STZ toxicity and
not to diabetes, we analyzed BM Tyr-OH staining in
ob/ob mice, a model of T2D, and found a similar pau-
perization of SNS fibers (Fig. 2).

To test the consequence of sympathectomy on BM
function in diabetes, we analyzed LKS cells and
CD34'FIk1" cells (EPCs) in T1D mice and 6-OHDA-
treated mice before and after stimulation with G-CSF or
hind-limb ischemia. Consistent with previous findings
(8), diabetic animals were unable to mobilize LKS cells
and EPCs after G-CSF or ischemia. Mice treated with
6-OHDA also showed impaired mobilization of LKS cells
and EPCs in response to both stimuli (Fig. 3A and B).
While the SNS dependency of the mobilizing effect of
G-CSF is well-established (14), the role of BM SNS in
ischemia-induced mobilization was hitherto unknown. The
BM content of EPCs, but not of LKS cells, was reduced in
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Table 1—Clinical characteristics of the study population

No DAN DAN

Characteristics (n=112) (n =29
Age (years) 59.1 = 11.1 52.2 = 13.8*
Sex male 66 59
T1D/T2D 24/88 1217
Diabetes duration (years) 10.5 = 9.9 12.0 = 10.2
HbA. (%) 77 15 8.8 + 2.1*
BMI (kg/m?) 28.6 * 5.4 27.7 * 5.4
Waist circumference (cm) 94.6 + 26.7 92.8 + 24.7
Smoking habit 14 14
Hypertension 61 66
Systolic blood pressure

(mmHg) 131.7 = 16.8 130.2 = 18.5
Diastolic blood pressure

(mmHg) 78.5 = 10.2 77.8 £ 8.4
Heart rate (bpm) 74.9 = 10.7 80.3 = 12.0*
Total cholesterol (mg/dL)  181.9 = 41.3  179.4 + 56.1
HDL cholesterol (mg/dL) 50.7 = 17.1 48.2 + 20.6
LDL cholesterol (mg/dL) 108.9 + 28.8 110.3 = 35.8
Triglycerides (mg/dL) 121.5 = 81.0 123.0 = 64.7
Coronary artery disease 7 10
Peripheral arterial disease 8 7
Cerebrovascular disease 38 45
Retinopathy 19 SON
Serum creatinine (wmol/L)  72.6 = 28.2 83.2 =+ 259
Albumin excretion rate

(mg/g) 63.7 = 274.6 167.5 *= 358.5
Albumin excretion rate

>30 mg/g 26.8 44.8
Insulin 38 57
Metformin 51 43
Sulphonylureas 17 11
Glinides 4
Glitazones
DPP-4 inhibitors 4
GLP-1 receptor agonists 1
ACEi/ARBs 63 54
Calcium antagonists 15 14
B-Blockers 17 18
Aspirin 29 32
Statin 60 54
Fibrate 4 0
CD34*/10° cells 464 = 203 279 = 174

Data are mean = SE or %, unless otherwise indicated. DPP-4,
dipeptidyl peptidase-4; GLP-1, glucagon-like peptide 1; ACEi,
angiotensin-converting enzyme inhibitor; ARB, angiotensin re-
ceptor blocker. *P < 0.05, DAN vs. no DAN.
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Figure 1—DAN reduces the number of circulating stem cells. A and B: Circulating CD34* cell levels (expressed as cells/10° events in A or
cells/mL in B) are progressively reduced with increasing number of pathological DAN tests in diabetic patients. Diabetic patients meeting

diagnostic criteria for DAN had reduced CD34" cells/10° events (C

) and CD34* cells/mL (D), compared with DAN-free patients. E and F: A

breakdown analysis for each DAN test showed trend reductions of CD34" cells. *P < 0.05, pathologic vs. normal test.

diabetic animals, while steady-state circulating levels of
EPCs and LKS cells were unaffected by diabetes or sym-
pathectomy (Supplementary Fig. 1). In vitro, STZ and 6-
OHDA induced minor changes in the survival of total BM
cells and CD34" BM cells, and in the generation of he-
matopoietic colonies (Supplementary Fig. 2). These data
rule out that chemical toxicity or absolute pauperization
of intramarrow stem cells account for the diabetes- and
neuropathy-associated mobilopathy.

Because sympathectomy caused similar mobilization
impairment as that in diabetes, we reasoned that the
diabetic stem cell mobilopathy could be attributed to
autonomic denervation. In support of this, we show
that diabetic mice were able to mobilize LKS cells in
response to AMD3100/Plerixafor (Fig. 3C), which is

a SNS-independent mobilizer (24). In addition, the
norepinephrine (NE) reuptake inhibitor desipramine,
which potentiates residual SNS outflow in autonomic
ganglia (25), partially restored G-CSF-induced LKS cell
mobilization in diabetic mice (Fig. 3D).

As a functional readout of impaired mobilization after
ischemia, we found that, although the microvasculature
was mildly affected, hind paw perfusion was significantly
impaired in diabetic and sympathectomized mice (Fig.
3E). This is in compliance with the known reperfusion
defect of diabetes (26,27) and the recent finding that
catecholamines regulate postischemic tissue remodeling
(28). Collectively, these data indicate that diabetes and
autonomic neuropathy hamper BM stem cell mobiliza-
tion and postischemic responses.
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Figure 2—Experimental diabetes induces BM denervation. A: Representative staining of BM sections for Tyr-OH (red). Scale bar, 50 pm.
B: Quantification of Tyr-OH staining in nondiabetic controls, T1D (by STZ administration), T2D (by crossing with ob/ob mice), and

sympathectomized (6-OHDA) animals (n = 5/group). *P < 0.05.

p66Shc Mediates Diabetic BM Neuropathy

Previous studies in mice show that p66Shc mediates hy-
perglycemic damage and diabetes complications (29).
Therefore, we tested whether p66Shc is involved in BM
denervation induced by diabetes. First, we report that
gene expression of p66Shc was increased in PBMCs of
diabetic patients, which was worsened by the presence of
DAN (Fig. 4A and Supplementary Table 2). In addition,
BM cells from T1D (induced by STZ), T2D (by crossing
with 0b/ob mice), and sympathectomized (6-OHDA) mice
showed increased p66Shc gene expression compared with
controls (Fig. 4B). The functional consequence of this
association was tested using p66Shc™’~ mice, which, once
made diabetic by STZ injection (T1D) or by crossing with
ob/ob mice (T2D), were protected from BM sympathec-
tomy, as evidenced by the preserved number of Tyr-OH"
fibers (Fig. 4C and D). As a result, T1D (induced by STZ)
and T2D (by crossing with ob/ob mice) p66Shc ™/~ mice
were able to mobilize LKS cells and EPCs after G-CSF
administration, despite the fact that they were as hy-
perglycemic as wild-type diabetic mice (Fig. 4E). To
confirm that restored mobilization in p66Shc /™ diabetic
mice was due to preserved BM innervation, we show that

STZ diabetic p66Shc™’~ mice treated with 6-OHDA,
which effectively denervates the BM despite p66Shc
knockout (KO) (Fig. 4D), were unable to mobilize LKS
cells after G-CSF stimulation (Fig. 4F).

Sirtuin 1 Downregulation Contributes to Impaired Stem
Cell Mobilization in Diabetes

Because Sirtl has been implicated in EPC survival and
proangiogenic activity (30), we analyzed its contribution
in the mobilopathy model. We first found that Sirt1 gene
expression was reduced in PBMCs of diabetic patients
with DAN compared with those without (Fig. 5A and
Supplementary Table 2). Consistently, Sirtl gene ex-
pression was reduced in BM cells of T1D, T2D, and
sympathectomized mice compared with controls (Fig.
5B). The link between neuropathy and BM Sirtl down-
regulation is strengthened by the evidence that preser-
vation of BM innervation by p66Shc deletion prevented
BM Sirtl] mRNA reduction induced by T1D (by STZ ad-
ministration) and T2D (by crossing with ob/ob mice) (Fig.
5B). A cAMP-dependent activation of Sirtl has been re-
cently described (31), and we show here that treatment
of human PBMCs with the nonselective B-adrenergic
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agonist isoproterenol stimulated Sirt] mRNA expression
in vitro (Supplementary Fig. 3), providing a link between
sympathectomy and reduced BM Sirtl expression. Con-
sistently, we also found that potentiation of NE signaling
with desipramine restored Sirtl gene expression in the

BM of T1D (by STZ administration) mice (Fig. 5C).

To understand the functional consequences of Sirt1
downregulation in the BM, we generated hematopoietic-
restricted Sirt1™”~ mice (Vav1-Sirt1 "), lacking Sirt1 in
cells that express the Vavl guanine nucleotide exchange
factor, which is specific for the hematopoietic system
(Supplementary Fig. 4) (32). Despite the fact that in-
consistent data have been reported on hematopoietic
function in ubiquitous and hematopoietic Sirt1 "~ mice
(33,34), Vav1-Sirt1’~ mice, when subjected to G-CSF
stimulation and hind-limb ischemia, recapitulated the
poor mobilizer phenotype observed in diabetic and
sympathectomized mice (Fig. 5D), supporting the idea
that Sirtl downregulation in the BM impairs mobiliza-
tion. To confirm this hypothesis, we generated Vav1-Sirtl
transgenic (TG) mice (Vav1-Sirt176), which showed a 12-
fold increased expression of Sirtl in BM LKS cells (Sup-
plementary Fig. 4). Once made diabetic with STZ or
sympathectomized with 6-OHDA, Vav1-Sirt1™® mice
were able to mobilize LKS cells and EPCs after G-CSF and
hind-limb ischemia (Fig. 5E and F), and showed improved
postischemic paw perfusion (Fig. 5G and H). To test the
role of Vavl-expressing cells in the ischemic vasculature,
we analyzed Vav1-YFP mice, which express the yellow
fluorescent protein (YFP) only in hematopoietic (Vavl®)
cells. Based on the integration of YFP" cells into the
muscle vascular endothelium of ischemic compared with
nonischemic hind limbs, we show that Vavl™ cells can
contribute to postischemic angiogenesis (Supplementary
Fig. 5), explaining why modulation of Sirt1 in Vavl” cells
can translate into improved recovery after ischemia.
These data indicate that reduced Sirtl expression in the
BM is responsible for the impaired stem cell mobilization
in diabetic and sympathectomized mice and that this can
impact on vascular recovery.

Overexpression of Adhesion Molecules Impair Stem
Cell Mobilization in Diabetes and Neuropathy

Data obtained in Vavi-Sirt1%’7 mice indicate that
mobilization is affected by hematopoietic cell-intrinsic
mechanisms in diabetic and sympathectomized mice. In
addition, the mechanism of impaired stem cell mobili-
zation associated with DAN are likely to be very down-
stream in the cascade of events that make cells leaving
the niche, as is common to G-CSF and ischemia, which
act on different niche components (35). Therefore, we
analyzed the gene expression of a series of typical niche
adhesion molecules (CD11a, CD11c, CD49d, CD49e,
CD62L, and intracellular adhesion molecule 1) in BM
cells, and found that they were globally upregulated in
diabetic and sympathectomized mice compared with
controls (Supplementary Fig. 6). The link between
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diabetic BM neuropathy and changes in gene expression
is supported by the finding that upregulation of adhesion
molecule genes occurred after the development of neu-
ropathy in T1D mice (Supplementary Fig. 7). We focused
on CD62L/1L-selectin because overexpression of this
molecule was previously noted by others in the diabetic
BM (7). Upregulation of CD62L was confirmed by flow
cytometry on LKS cells of T1D (by STZ administration),
T2D (by crossing with ob/ob mice), sympathectomized,
and Vavi-Sirt1 ™/~ mice, whereas it was prevented in
p66Shc’~ LKS cells of diabetic and sympathectomized
mice (Fig. 6A and B). The link between adrenergic sig-
naling, Sirtl and CD62L expression is supported by the
decrease in CD62L mRNA after treatment of PBMCs with
isoproterenol (Supplementary Fig. 1). L-Selectin (CD62L)
is prominently involved in the trafficking of blood cells to
lymphoid tissues (36), and excess L-selectin expression
may render the cells more adherent to the BM stroma,
preventing mobilization. The relevance of L-selectin
overexpression in this setting is confirmed by the ob-
servation that genetic L-selectin deletion (Sell ") par-
tially restored mobilization in diabetic and
sympathectomized mice (Fig. 6C).

DISCUSSION

This study shows for the first time that autonomic
neuropathy in the BM impairs stem cell mobilization in
diabetes with dysregulation of the life span-determinant
genes p66Shc and Sirt1. Previous data on BM SNS in
diabetes models were inconsistent, reporting either re-
duced (37) or increased (7) fibers. Our data indicate that
T1D (by STZ administration) and T2D (by crossing with
ob/ob mice) in mice are characterized by a profound de-
pletion of BM SNS fibers. We also show that BM de-
nervation in models of diabetes occurs via p66Shc. p66Shc
is induced by hyperglycemia (38) and mediates the de-
velopment of several complications of experimental di-
abetes, including cardiomyopathy (39), nephropathy
(40), and delayed wound healing (41). In addition, p66Shc
contributes to the hyperglycemic damage of BM-derived
EPCs (42). Although the link between DAN and mobil-
opathy cannot be firmly established, the preservation of
BM innervation and the rescue of mobilization in
p66Shc’~ diabetic mice suggest that neuropathy impairs
mobilization in models of diabetes. Other eventual
effects of p66Shc deletion seem important in this model,
because chemical denervation abolished the mobilization
rescue in diabetic p66Shc”~ mice. The mobilizing ac-
tivity of G-CSF is dependent on the SNS (14), and we
show that hind-limb ischemia also requires a functional
SNS system to elicit stem/progenitor mobilization, be-
cause it is defective in sympathectomized mice. On the
other hand, AMD3100 directly disrupts the CXCR4/
CXCL12 interaction to promote mobilization in-
dependently of the SNS (24). The effectiveness of
AMD3100 in inducing mobilization in diabetic mice and
the inefficacy of both SNS-dependent stimuli (G-CSF and
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patients with and without DAN. *P < 0.05. B: Gene expression of p66Shc in the BM of control, T1D (by STZ administration), and sym-
pathectomized (6-OHDA) mice. *P < 0.05, vs. nondiabetic controls (n = 5/group). C: Quantification of Tyr-OH immunoreactive sympathetic
fibers in wild-type and p66Shc™~ T1D and T2D mice. *P < 0.05 (n = 5/group). D: Representative immunofluorescence images of Tyr-OH
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mobilization in wild-type and p66Shc ™'~ T1D (STZ) and T2D (ob/ob) mice after G-CSF. *P < 0.05, vs. baseline (n = 5/group). F: LKS cell
and EPC mobilization in wild-type T1D (STZ) mice, p66Shc™’~ T1D mice, and p66Shc ™'~ T1D 6-OHDA-treated mice after G-CSF. *P <

0.05, vs. baseline (n = 3-5/group). DM, diabetes.

ischemia) are in line with the hypothesis that neuropathy
impairs mobilization in diabetes. In addition, potentia-
tion of residual SNS output by treatment with the NE
reuptake inhibitor desipramine partially restored G-CSF-
induced mobilization in diabetic mice. It has been dem-
onstrated that G-CSF stimulates the SNS by reducing NE
reuptake, while desipramine can rescue G-CSF-triggered
mobilization in mice that mobilize poorly (25). These
data suggest that a defective adrenergic signaling is

responsible for impaired mobilization in diabetes and
suggests a potential treatment strategy. We have pre-
viously shown that T1D and T2D patients have impaired
G-CSF-induced mobilization, irrespective of the neu-
ropathy (9). However, SNS fiber loss can be present in up
to 50% of patients without clinical/instrumental evi-
dence of DAN (43). Thus, investigation into the history
and features of diabetic BM dysautonomy is an in-
teresting matter for future research.
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Sirt1 has been implicated in EPC survival and proan-
giogenic activity (30), and its expression is reduced in
EPCs of T2D patients (44) and is lowered by high glucose
levels in THP-1 cells (45). Diabetic as well as chemically
induced neuropathy reduced Sirt1 expression in the BM.
The mechanism whereby the SNS regulates Sirt1 ex-
pression remains unclear, but we show that activation of
the B-adrenergic receptor increases Sirtl mRNA in blood
cells in vitro. The link between neuropathy and Sirt1
repression is strengthened in vivo by the observation
that potentiating NE signaling with desipramine rapidly
restored Sirtl expression in the BM of T1D mice. In
addition, the induction of diabetes in p66Shc™’~ was not
followed by Sirt1 mRNA reduction in the BM, which can
be attributed to the preserved BM innervation, although
we cannot definitely rule out that metabolic

dysregulations independent of neuropathy can affect
Sirtl expression. Importantly, we show that Sirtl
downregulation in BM cells is causally linked to impaired
mobilization. In fact, hematopoietic-specific Sirt1 KO
recapitulated the poor mobilizer phenotype, while he-
matopoietic Sirt]l overexpression rescued mobilization in
diabetic and sympathectomized mice. As hematopoietic
cell-intrinsic modulation of Sirt1 was sufficient to in-
fluence mobilization, we focused on a series of adhesion
molecules typically implicated in the trafficking of stem
cells in the BM. The generalized induction of adhesion
molecule genes in diabetic and sympathectomized mice,
by rendering the cells more adherent to the stroma, can
thus prevent mobilization. Excess CD62L (L-selectin)
expression on BM LKS cells of diabetic mice was pre-
viously noted (7), and we now report that this is in fact
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(n = 5/group).

implicated in the diabetes- and neuropathy-induced
mobilopathy, because L-selectin deletion was sufficient to
rescue mobilization in both models. Other adhesion
molecules likely provide redundant signals, such that
moderate increases in their expression may additively
promote stem cell retention.

Together, our data suggest that BM autonomic neu-
ropathy induced by diabetes via p66Shc plays a central
role in the impaired BM stem cell mobilization, involving
dysregulation of hematopoietic Sirt1 and cell-intrinsic
mechanisms including adhesion molecule overexpression.
As multiple redundant mechanisms regulate the complex
stem cell niche, it is likely that SNS-independent path-
ways contribute to diabetes-induced impairment in stem
cell mobilization. Importantly, both in mice and in

humans, diabetes induces extensive microvascular
remodeling of the BM (6). We now expand this notion by
showing that neuropathy is an important component of
diabetic niche remodeling, with negative functional
implications for mobilization.

Vascular stem/progenitor cells mobilized from the BM
by G-CSF have been shown to stimulate endothelial
healing and angiogenesis (46,47). In addition, ischemia-
induced mobilization is considered a natural response to
tissue damage that promotes angiogenesis and reperfu-
sion (11). Therefore, impaired mobilization of cells with
vasculotropic activity is expected to promote cardiovas-
cular disease. We show that the poor mobilizer pheno-
type of diabetic and sympathectomized mice is associated
with defective recovery after ischemia. While several
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BM-independent mechanisms can contribute to this
phenomenon, it is of interest that cell-intrinsic Sirt1
overexpression rescues postischemic mobilization and
reperfusion at the same time. The relevance of Sirtl
modulation in Vavl-expressing cells is supported by the
contribution played by Vavl® cells to the microvascula-
ture of ischemic muscles. Therefore, our data suggest
that the rescue of BM function in diabetes can promote
recovery from ischemia.

DAN is a disabling condition with reduced life ex-
pectancy and increased cardiovascular risk (18). Our data
suggest a novel possible mechanism, whereby DAN
worsens vascular health. Future investigation into the
features of BM neuropathy in humans and its relation-
ships with cardiovascular DAN will shed light on this
novel diabetes complication. In addition, diabetes is
considered an accelerated aging disease (48), and dysre-
gulation of longevity-determinant hubs, such as Sirt1 and
p665Shc, emerges as a critical factor in inducing aging
features, including autonomic neuropathy, impaired
stem cell mobilization, and defective recovery from is-
chemia. Therefore, countering aging-associated pathways
has the potential to tackle vascular complications of
diabetes by restoring BM function and BM-derived stem/
progenitor cells.
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