11 research outputs found

    Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: findings from the ENIGMA ADHD, ASD, and OCD Working Groups

    Get PDF
    Objective Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that frequently co-occur. We aimed to directly compare all three disorders. The ENIGMA consortium is ideally positioned to investigate structural brain alterations across these disorders. Methods Structural T1-weighted whole-brain MRI of controls (n=5,827) and patients with ADHD (n=2,271), ASD (n=1,777), and OCD (n=2,323) from 151 cohorts worldwide were analyzed using standardized processing protocols. We examined subcortical volume, cortical thickness and surface area differences within a mega-analytical framework, pooling measures extracted from each cohort. Analyses were performed separately for children, adolescents, and adults using linear mixed-effects models adjusting for age, sex and site (and ICV for subcortical and surface area measures). Results We found no shared alterations among all three disorders, while shared alterations between any two disorders did not survive multiple comparisons correction. Children with ADHD compared to those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD also had smaller ICV than controls and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared to adult controls and other clinical groups. No OCD-specific alterations across different age-groups and surface area alterations among all disorders in childhood and adulthood were observed. Conclusion Our findings suggest robust but subtle alterations across different age-groups among ADHD, ASD, and OCD. ADHD-specific ICV and hippocampal alterations in children and adolescents, and ASD-specific cortical thickness alterations in the frontal cortex in adults support previous work emphasizing neurodevelopmental alterations in these disorders

    Temperature effects on Trichogramma pretiosum Riley and Trichogrammatoidea annulata De Santis

    No full text
    The influence of temperature on lifetime attributes of Trichogramma pretiosum Riley and Trichogrammatoidea annulata De Santis (Hymenoptera: Trichogrammatidae) was evaluated at four constant temperatures (15, 20, 25, and 30º C), RH 70 ± 10%, photophase 14 h. Anagasta kuehniella (Lepidoptera: Pyralidae) eggs were used as hosts. Developmental times of both parasitoid species were similar when exposed to 20, 25, or 30º C. T. annulata, however, developed slightly faster than T. pretiosum at 15º C. Emergence rates of both species were above 89%. The temperature threshold for T. pretiosum and T. annulata was 11º C and the number of degree-days required for their development was 126.9 and 122.3, respectively. Parasitization was maximal at 25º C. T. annulata, however, parasitized significantly more hosts than T. pretiosum in the entire temperature range. Temperature had no effect in brood size.T. annulata progeny consisted predominantly of males, except at 15º C, whereas in T.pretiosumitconsisted predominantly of females, except at 30º C. Parental females lived longer than males

    Dynamics of Brain Structure and its Genetic Architecture over the Lifespan

    No full text
    Human brain structure changes throughout our lives. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental, and neurodegenerative diseases. While heritable, specific loci in the genome that influence these rates are largely unknown. Here, we sought to find common genetic variants that affect rates of brain growth or atrophy, in the first genome-wide association analysis of longitudinal changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 10,163 individuals aged 4 to 99 years, on average 3.5 years apart, were used to compute rates of morphological change for 15 brain structures. We discovered 5 genome-wide significant loci and 15 genes associated with brain structural changes. Most individual variants exerted age-dependent effects. All identified genes are expressed in fetal and adult brain tissue, and some exhibit developmentally regulated expression across the lifespan. We demonstrate genetic overlap with depression, schizophrenia, cognitive functioning, height, body mass index and smoking. Several of the discovered loci are implicated in early brain development and point to involvement of metabolic processes. Gene-set findings also implicate immune processes in the rates of brain changes. Taken together, in the world’s largest longitudinal imaging genetics dataset we identified genetic variants that alter age-dependent brain growth and atrophy throughout our lives

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    No full text
    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging

    Dynamics of brain structure and its genetic architecture over the lifespan

    No full text
    Human brain structure changes throughout our lives. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental, and neurodegenerative diseases. While heritable, specific loci in the genome that influence these rates are largely unknown. Here, we sought to find common genetic variants that affect rates of brain growth or atrophy, in the first genome-wide association analysis of longitudinal changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 10,163 individuals aged 4 to 99 years, on average 3.5 years apart, were used to compute rates of morphological change for 15 brain structures. We discovered 5 genome-wide significant loci and 15 genes associated with brain structural changes. Most individual variants exerted age-dependent effects. All identified genes are expressed in fetal and adult brain tissue, and some exhibit developmentally regulated expression across the lifespan. We demonstrate genetic overlap with depression, schizophrenia, cognitive functioning, height, body mass index and smoking. Several of the discovered loci are implicated in early brain development and point to involvement of metabolic processes. Gene-set findings also implicate immune processes in the rates of brain changes. Taken together, in the world’s largest longitudinal imaging genetics dataset we identified genetic variants that alter age-dependent brain growth and atrophy throughout our lives

    Virtual Ontogeny of Cortical Growth Preceding Mental Illness

    Get PDF
    Background: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. Methods: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. Results: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. Conclusions: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy
    corecore