7 research outputs found

    Live Cell Imaging of Bone Marrow Stromal Cells on Nano-pitted and Polished Titanium Surfaces: A Micro-Incubator in vitro Approach

    Get PDF
    Current orthopedic implants are not conducive for optimal integration of the biomaterial with newly-formed tissue (osseointegration) inside a patient’s body. In this study, medical-rade Ti-6Al-4V was used as a substrate due to its biocompatibility and ability to facilitate cellular adhesion and proliferation. Live cell imaging was conducted on bone marrow stromal cells, genetically modified to express the green fluorescent protein (GFP), from the 24-96 hours growth period, with the first 24 hours of growth being held inside a lab-scale incubator. Periodic images were recorded on nanopitted anodized and polished Ti-6Al-4V substrates to study how substratestiffness influences adhesion and proliferation. Collected images were analyzed for mitosis, adhesion, and filopodia-stretchability using ImageJ, an image processing program. Images were enhanced in order to perform cell counts at 24, 48, 72, and 96 hours of growth. Continuous recordings were produced to account for the number of mitosis occurrences and cellular migration on each of the substrates. Based on the conducted experiments, it appears that polished Ti-6Al-4V has a higher cell adherence than “nanopitted” anodized surface and an improved rate of proliferation which may be because the cells once adhered on the nano-pitted surface have less ability to detach in-order to undergo mitosis.https://engagedscholarship.csuohio.edu/u_poster_2014/1004/thumbnail.jp

    Extinction, coexistence, and localized patterns of a bacterial population with contact-dependent inhibition

    No full text
    BACKGROUND: Contact-dependent inhibition (CDI) has been recently revealed as an intriguing but ubiquitous mechanism for bacterial competition in which a species injects toxins into its competitors through direct physical contact for growth suppression. Although the molecular and genetic aspects of CDI systems are being increasingly explored, a quantitative and systematic picture of how CDI systems benefit population competition and hence alter corresponding competition outcomes is not well elucidated. RESULTS: By constructing a mathematical model for a population consisting of CDI+ and CDI- species, we have systematically investigated the dynamics and possible outcomes of population competition. In the well-mixed case, we found that the two species are mutually exclusive: Competition always results in extinction for one of the two species, with the winner determined by the tradeoff between the competitive benefit of the CDI+ species and its growth disadvantage from increased metabolic burden. Initial conditions in certain circumstances can also alter the outcome of competition. In the spatial case, in addition to exclusive extinction, coexistence and localized patterns may emerge from population competition. For spatial coexistence, population diffusion is also important in influencing the outcome. Using a set of illustrative examples, we further showed that our results hold true when the competition of the population is extended from one to two dimensional space. CONCLUSIONS: We have revealed that the competition of a population with CDI can produce diverse patterns, including extinction, coexistence, and localized aggregation. The emergence, relative abundance, and characteristic features of these patterns are collectively determined by the competitive benefit of CDI and its growth disadvantage for a given rate of population diffusion. Thus, this study provides a systematic and statistical view of CDI-based bacterial population competition, expanding the spectrum of our knowledge about CDI systems and possibly facilitating new experimental tests for a deeper understanding of bacterial interactions

    Determination Of The Presence Of Diphtheria Toxin In The Myocardial Tissue Of Rabbits And A Female Subject By Using An Immunofluorescent Antibody Method

    No full text
    Background Clinical diagnosis of diphtheria is often difficult, in particular in countries where the disease is rarely observed, such as Turkey. In 2011, after 12 years of no recorded diphtheria cases in Turkey, a 34-year-old woman was diagnosed with diphtheria; she later died of myocarditis. In this study, we aimed to demonstrate the diagnostic potential of an immunofluorescent antibody method to determine the presence of diphtheria toxin (DT) in the myocardial cells of DT-injected rabbits and the female subject. Methods We randomly divided rabbits into two groups: a control group and a DT-injected group. Diphtheria intoxication was simulated in the rabbits by intravenous injection of DT. The myocardium of the rabbits and the female subject were harvested for histopathologic and immunofluorescence examination. A mouse monoclonal anti-DT antibody was used for the immunofluorescent antibody method. Results The presence of DT in the myocardial cells of both the rabbits and the female subject was visualized using the immunofluorescent method. Conclusions Laboratory diagnosis of diphtheria is challenging because of non-toxigenic C. diphtheriae strains and/or the dysfunction of DT. However, visualizing the presence of DT in the myocardial tissue may act as an indicator of biologically active DT. We validated that an immunofluorescent method, which utilizes a monoclonal anti-DT (A-subunit specific) antibody, is a useful diagnostic tool to determine the presence of DT in the myocardium of rabbits and human.PubMe

    Distribution Of Streptococcus Pneumoniae Serotypes That Cause Parapneumonic Empyema In Turkey

    No full text
    Streptococcus pneumoniae is the most common etiological cause of complicated pneumonia, including empyema. In this study, we investigated the serotypes of S. pneumoniae that cause empyema in children. One hundred fifty-six children who were diagnosed with pneumonia complicated with empyema in 13 hospitals in seven geographic regions of Turkey between 2010 and 2012 were included in this study. Pleural fluid samples were collected by thoracentesis and tested for 14 serotypes/serogroups using a Bio-Plex multiplex antigen detection assay. The serotypes of S. pneumoniae were specified in 33 of 156 samples. The mean age +/- the standard deviation of the 33 patients was 6.17 +/- 3.54 years (range, 0.6 to 15 years). All of the children were unvaccinated according to the vaccination reports. Eighteen of the children were male, and 15 were female. The serotypes of the non-7-valent pneumococcal conjugated vaccine (non-PCV-7), serotype 1, serotype 5, and serotype 3, were detected in eight (14.5%), seven (12.7%), and five (9.1%) of the samples, respectively. Serotypes 1 and 5 were codetected in two samples. The remaining non-PCV- 7 serotypes were 8 (n = 3), 18 (n = 1), 19A (n = 1), and 7F/A (n = 1). PCV-7 serotypes 6B, 9V, 14, 19F, and 23F were detected in nine (16.3%) of the samples. The potential serotype coverages of PCV-7, PCV-10, and PCV-13 were 16.3%, 45.4%, and 60%, respectively. Pediatric parapneumonic empyema continues to be an important health problem despite the introduction of conjugated pneumococcal vaccines. Active surveillance studies are needed to monitor the change in S. pneumoniae serotypes that cause empyema in order to have a better selection of pneumococcal vaccines.WoSScopu

    The Prevalence, Serogroup Distribution And Risk Factors Of Meningococcal Carriage In Adolescents And Young Adults In Turkey

    No full text
    The serogroup epidemiology of invasive meningococcal disease (IMD), which varies considerably by geographic region and immunization schedule, changes continuously. Meningococcal carriage data are crucial for assessing IMD epidemiology and designing f potential vaccination strategies. Meningococcal seroepidemiology in Turkey differs from that in other countries: serogroups W and B are the predominant strains for IMD during childhood, whereas no serogroup C cases were identified over the last 10 y and no adolescent peak for IMD was found. There is a lack of data on meningococcal carriage that represents the whole population. The aims of this multicenter study (12 cities in Turkey) were to evaluate the prevalence of Neisseria meningitidis carriage, the serogroup distribution and the related risk factors (educational status, living in a dormitory or student house, being a household contact with Hajj pilgrims, smoking, completion of military service, attending bars/clubs) in 1518 adolescents and young adults aged 10-24 y. The presence of N. meningitidis DNA was tested, and a serogroup analysis was performed using polymerase chain reaction. The overall meningococcal carriage rate was 6.3% (n = 96) in the study population. A serogroup distribution of the 96 N. meningitidis strains isolated from the nasopharyngeal specimens revealed serogroup A in 5 specimens (5.2%), serogroup B in 9 specimens (9.4%), serogroup W in 64 specimens (66.6%), and serogroup Y in 4 specimens (4.2%); 14 were classified as non-grouped (14.4%). No serogroup C cases were detected. The nasopharyngeal meningococcal carriage rate was 5% in the 10-14 age group, 6.4% in the 15-17 age-group, and 4.7% in the 18-20 age group; the highest carriage rate was found in the 21-24 age group (9.1%), which was significantly higher than those of the other age groups (p < 0.05). The highest carriage rate was found in 17-year-old adolescents (11%). The carriage rate was higher among the participants who had had close contact with Hajj/Umrah pilgrims (p < 0.01) or a history of upper respiratory tract infections over the past 3 months (p < 0.05). The nasopharyngeal carriage rate was 6.3% among adolescents and young adults in Turkey and was similar to the recent rates observed in the same age groups in other countries. The most prevalent serogroup was W, and no serogroup C cases were found. In conclusion, the present study found that meningococcal carriage reaches its peak level by age 17, the highest carriage rate was found in 21-to 24-year-olds and the majority of the carriage cases were due to serogroup W. Adolescents and young adult carriers seem to be a potential reservoir for the disease, and further immunization strategies, including adolescent immunization, may play a role in the control of IMD.WoSScopu

    Meningitis caused by Neisseria Meningitidis, Hemophilus Influenzae Type B and Streptococcus Pneumoniae during 2005–2012 in Turkey

    No full text
    Successful vaccination policies for protection from bacterial meningitis are dependent on determination of the etiology of bacterial meningitis. Cerebrospinal fluid (CSF) samples were obtained prospectively from children from 1 month to ≤ 18 years of age hospitalized with suspected meningitis, in order to determine the etiology of meningitis in Turkey. DNA evidence of Neisseria meningitidis (N. meningitidis), Streptococcus pneumoniae (S. pneumoniae), and Hemophilus influenzae type b (Hib) was detected using multiplex polymerase chain reaction (PCR). In total, 1452 CSF samples were evaluated and bacterial etiology was determined in 645 (44.4%) cases between 2005 and 2012; N. meningitidis was detected in 333 (51.6%), S. pneumoniae in 195 (30.2%), and Hib in 117 (18.1%) of the PCR positive samples. Of the 333 N. meningitidis positive samples 127 (38.1%) were identified as serogroup W-135, 87 (26.1%) serogroup B, 28 (8.4%) serogroup A and 3 (0.9%) serogroup Y; 88 (26.4%) were non-groupable. As vaccines against the most frequent bacterial isolates in this study are available and licensed, these results highlight the need for broad based protection against meningococcal disease in Turkey
    corecore