17 research outputs found

    Day length as a key factor moderating the response of coccolithophore growth to elevated pCO2

    Get PDF
    The fate of coccolithophores in the future oceans remains uncertain, in part due to key factors having not been standardized across experiments. A potentially moderating role for differences in day length (photoperiod) remains largely unexplored. We therefore cultured four different geographical isolates of the species Emiliania huxleyi, as well as two additional species, Gephyrocapsa oceanica (tropical) and Coccolithus braarudii (temperate), to test for interactive effects of pCO2 with the light : dark (L : D) cycle. We confirmed a general regulatory effect of photoperiod on the pCO2 response, whereby growth and particulate inorganic carbon and particulate organic carbon (PIC : POC) ratios were reduced with elevated pCO2 under 14 : 10 h L : D, but these reductions were dampened under continuous (24 h) light. The dynamics underpinning this pattern generally differed for the temperate vs. tropical isolates. Reductions in PIC : POC with elevated pCO2 for tropical taxa were largely through reduced calcification and enhanced photosynthesis under 14 : 10 h L : D, with differences dampened under continuous light. In contrast, reduced PIC : POC for temperate strains reflected increases of photosynthesis that outpaced increases in calcification rates under 14 : 10 h L : D, with both responses again dampened under continuous light. A multivariate analysis of 35 past studies of E. huxleyi further demonstrated that differences in photoperiod account for as much as 40% (strain B11/92) to 55% (strain NZEH) of the variance in reported pCO2-induced reductions to growth but not PIC : POC. Our study thus highlights a critical role for day length in moderating the effect of ocean acidification on coccolithophore growth and consequently how this response may play out across latitudes and seasons in future oceans

    A pelagic microbiome (viruses to protists) from a small cup of seawater

    Get PDF
    The aquatic microbiome is composed of a multi-phylotype community of microbes, ranging from the numerically dominant viruses to the phylogenetically diverse unicellular phytoplankton. They influence key biogeochemical processes and form the base of marine food webs, becoming food for secondary consumers. Due to recent advances in next-generation sequencing, this previously overlooked component of our hydrosphere is starting to reveal its true diversity and biological complexity. We report here that 250 mL of seawater is sufficient to provide a comprehensive description of the microbial diversity in an oceanic environment. We found that there was a dominance of the order Caudovirales (59%), with the family Myoviridae being the most prevalent. The families Phycodnaviridae and Mimiviridae made up the remainder of pelagic double-stranded DNA (dsDNA) virome. Consistent with this analysis, the Cyanobacteria dominate (52%) the prokaryotic diversity. While the dinoflagellates and their endosymbionts, the superphylum Alveolata dominates (92%) the microbial eukaryotic diversity. A total of 834 prokaryotic, 346 eukaryotic and 254 unique virus phylotypes were recorded in this relatively small sample of water. We also provide evidence, through a metagenomic-barcoding comparative analysis, that viruses are the likely source of microbial environmental DNA (meDNA). This study opens the door to a more integrated approach to oceanographic sampling and data analysis

    Implications of increasing Atlantic influence for Arctic microbial community structure

    Get PDF
    Increasing influence of Atlantic water in the Arctic Ocean has the potential to significantly impact regional water temperature and salinity. Here we use a rDNA barcoding approach to reveal how microbial communities are partitioned into distinct assemblages across a gradient of Atlantic-Polar Water influence in the Norwegian Sea. Data suggest that temperate adapted bacteria may replace cold water taxa under a future scenario of increasing Atlantic influence, but the eukaryote response is more complex. Some abundant eukaryotic cold water taxa could persist, while less abundant eukaryotic taxa may be replaced by warmer adapted temperate species. Furthermore, within lineages, different taxa display evidence of increased relative abundance in reaction to favourable conditions and we observed that rare microbial taxa are sample site rather than region specific. Our findings have significant implications for the vulnerability of polar associated community assemblages, which may change, impacting the ecosystem services they provide, under predicted increases of Atlantic mixing and warming within the Arctic region

    Genetic tool development in marine protists: emerging model organisms for experimental cell biology

    Get PDF
    Abstract: Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways
    corecore