220 research outputs found

    Effects of Field Simulated Marine Heatwaves on Sedimentary Organic Matter Quantity, Biochemical Composition, and Degradation Rates

    Get PDF
    Since rising temperature (T) will enhance biochemical reactions and coastal marine sediments are hotspots of carbon cycling, marine heatwaves’ (MHWs’) intensification caused by climate change will affect coastal biogeochemistry. We investigated the effects of MHWs on sediment organic matter (OM) in a nearshore locality (NW Sardinia, Mediterranean Sea) receiving an artificial warm water plume generating T anomalies of 1.5–5.0 °C. Sediments were collected before and after 3 and 11 weeks from the initial plume release. Both MHWs influenced sedimentary OM quantity, composition, and degradation rates, with major effects associated with the highest T anomaly after 3 weeks. Both MHWs enhanced sedimentary OM contents, with larger effects associated with the highest T anomaly. Phytopigment contents increased in the short term but dropped to initial levels after 11 weeks, suggesting the occurrence of thermal adaptation or stress of microphytobenthos. In the longer term we observed a decrease in the nutritional quality of OM and a slowdown of its turnover mediated by extracellular enzymes, suggestive of a decreased ecosystem functioning. We anticipate that intensification of MHWs will affect benthic communities not only through direct effects on species tolerance but also by altering benthic biogeochemistry and the efficiency of energy transfer towards higher trophic levels

    Antimicrobial‐Resistant Enterococcus spp. in Wild Avifauna from Central Italy

    Get PDF
    Bacteria of the genus Enterococcus are opportunistic pathogens, part of the normal intestinal microflora of animals, able to acquire and transfer antimicrobial resistance genes. The aim of this study was to evaluate the possible role of wild avifauna as a source of antimicrobial‐resistant enterococci. To assess this purpose, 103 Enterococcus spp. strains were isolated from the feces of wild birds of different species; they were tested for antimicrobial resistance against 21 molecules, vancomycin resistance, and high‐level aminoglycosides resistance (HLAR). Furthermore, genes responsible for vancomycin, tetracycline, and HLAR were searched. E. faecium was the most frequently detected species (60.20% of isolates), followed by E. faecalis (34.95% of isolates). Overall, 99.02% of the isolated enterococci were classified as multidrug‐resistant, with 19.41% extensively drug‐resistant, and 2.91% possible pan drug-resistant strains. Most of the isolates were susceptible to amoxicillin/clavulanic acid (77.67%) and ampicillin (75.73%), with only 5.83% of isolates showing an ampicillin MIC ≥ 64 mg/L. HLAR was detected in 35.92% of isolates, mainly associated with the genes ant(6)‐Ia and aac(6′)‐Ie‐aph(2′’)‐Ia. Few strains (4.85%) were resistant to vancomycin, and the genes vanA and vanB were not detected. A percentage of 54.37% of isolates showed resistance to tetracycline; tet(M) was the most frequently detected gene in these strains. Wild birds may contribute to the spreading of antimicrobial‐resistant enterococci, which can affect other animals and humans. Constant monitoring is essential to face up to the evolving antimicrobial resistance issue, and monitoring programs should include wild avifauna, to

    Effects of Current and Future Summer Marine Heat Waves on Posidonia oceanica: Plant Origin Matters?

    Get PDF
    Marine heat waves (MHWs), prolonged discrete anomalously warm water events, have been increasing significantly in duration, intensity and frequency all over the world, and have been associated with a variety of impacts including alteration of ecosystem structure and function. This study assessed the effects of current and futureMHWs on the Mediterranean seagrass Posidonia oceanica performance, also testing the importance of the thermal environment where the plant lives. The effects of current MHWs were studied through a mensurative experiment in a cold and in a warm site (West and North-West Sardinia, Italy, respectively). Future MHWs effects were tested through a manipulative experiment using P. oceanica shoots collected fromthe cold and warmsites and transplanted in a common garden in front of a power plant (North-West Sardinia): here plants were exposed to heat longer in duration and stronger in intensity than the natural MHWs of the last 20 years, resembling the future scenario. Morphological (total # of leaves, maximum leaf length, and percentage of total necrotic leaf length per shoot) and biochemical variables (leaf proteins, carbohydrates, and lipids) were considered. Plants had similar sublethal responses in both the experiments for most of the variables, revealing that current and future MHWs had similar effect types, but different in magnitude depending on the intensity of the waves: in general, the number of leaves, the maximum leaf length and lipid content decreased, while the leaf necrosis and carbohydrates increased. However, also the origin of the plants affected the results, corroborating the hypothesis that the thermal context the plants live affects their tolerance to the heat. Overall, this study provided evidence about the importance of biochemical variations, such as carbohydrate and lipid levels, as potentially good indicators of seagrass heat stress

    Effects of Current and Future Summer Marine Heat Waves on Posidonia oceanica: Plant Origin Matters?

    Get PDF
    Marine heat waves (MHWs), prolonged discrete anomalously warm water events, have been increasing significantly in duration, intensity and frequency all over the world, and have been associated with a variety of impacts including alteration of ecosystem structure and function. This study assessed the effects of current and future MHWs on the Mediterranean seagrass Posidonia oceanica performance, also testing the importance of the thermal environment where the plant lives. The effects of current MHWs were studied through a mensurative experiment in a cold and in a warm site (West and North-West Sardinia, Italy, respectively). Future MHWs effects were tested through a manipulative experiment using P. oceanica shoots collected from the cold and warm sites and transplanted in a common garden in front of a power plant (North-West Sardinia): here plants were exposed to heat longer in duration and stronger in intensity than the natural MHWs of the last 20 years, resembling the future scenario. Morphological (total # of leaves, maximum leaf length, and percentage of total necrotic leaf length per shoot) and biochemical variables (leaf proteins, carbohydrates, and lipids) were considered. Plants had similar sublethal responses in both the experiments for most of the variables, revealing that current and future MHWs had similar effect types, but different in magnitude depending on the intensity of the waves: in general, the number of leaves, the maximum leaf length and lipid content decreased, while the leaf necrosis and carbohydrates increased. However, also the origin of the plants affected the results, corroborating the hypothesis that the thermal context the plants live affects their tolerance to the heat. Overall, this study provided evidence about the importance of biochemical variations, such as carbohydrate and lipid levels, as potentially good indicators of seagrass heat stress.En prens

    Effects of seagrasses and algae of the Caulerpa family on hydrodynamics and particle-trapping rates

    Get PDF
    The widespread decline of seagrass beds within the Mediterranean often results in the replacement of seagrasses by opportunistic green algae of the Caulerpa family. Because Caulerpa beds have a different height, stiffness and density compared to seagrasses, these changes in habitat type modify the interaction of the seafloor with hydrodynamics, influencing key processes such as sediment resuspension and particle trapping. Here, we compare the effects on hydrodynamics and particle trapping of Caulerpa taxifolia, C. racemosa, and C. prolifera with the Mediterranean seagrasses Cymodocea nodosa and Posidonia oceanica. All macrophyte canopies reduced near-bed volumetric flow rates compared to bare sediment, vertical profiles of turbulent kinetic energy revealed peak values around the top of the canopies, and maximum values of Reynolds stress increased by a factor of between 1.4 (C. nodosa) and 324.1 (P. oceanica) when vegetation was present. All canopies enhanced particle retention rates compared to bare sediment. The experimental C. prolifera canopy was the most effective at particle retention (m2 habitat); however, C. racemosa had the largest particle retention capacity per structure surface area. Hence, in terms of enhancing particle trapping and reducing hydrodynamic forces at the sediment surface, Caulerpa beds provided a similar or enhanced function compared to P.oceanica and C. nodosa. However, strong seasonality in the leaf area index of C. racemosa and C. taxifolia within the Mediterranean, combined with a weak rhizome structure, suggests that sediments maybe unprotected during winter storms, when most erosion occurs. Hence, replacement of seagrass beds with Caulerpa is likely to have a major influence on annual sediment dynamics at ecosystem scales.This research was funded by the European Network of Excellence ‘‘Marine Biodiversity and Ecosystem Function’’ (MarBEF); FP6, EC contract no. 505446 and a grant from the Fundacio ´n BBVA. EPM was supported by a European Union Marie Curie host fellowship for transfer of knowledge, MTKD-CT-2004-509254, the Spanish national project EVAMARIA (CTM2005-00395/MAR) and the regional government of Andalusia project FUNDIV(P07-RNM-2516)

    Between a rock and a hard place: Environmental and engineering considerations when designing coastal defence structures

    Get PDF
    Coastal defence structures are proliferating as a result of rising sea levels and stormier seas. With the realisation that most coastal infrastructure cannot be lost or removed, research is required into ways that coastal defence structures can be built to meet engineering requirements, whilst also providing relevant ecosystem services—so-called ecological engineering. This approach requires an understanding of the types of assemblages and their functional roles that are desirable and feasible in these novel ecosystems. We review the major impacts coastal defence structures have on surrounding environments and recent experiments informing building coastal defences in a more ecologically sustainable manner. We summarise research carried out during the THESEUS project (2009–2014) which optimised the design of coastal defence structures with the aim to conserve or restore native species diversity. Native biodiversity could be manipulated on defence structures through various interventions: we created artificial rock pools, pits and crevices on breakwaters; we deployed a precast habitat enhancement unit in a coastal defence scheme; we tested the use of a mixture of stone sizes in gabion baskets; and we gardened native habitat-forming species, such as threatened canopy-forming algae on coastal defence structures. Finally, we outline guidelines and recommendations to provide multiple ecosystem services while maintaining engineering efficacy. This work demonstrated that simple enhancement methods can be cost-effective measures to manage local biodiversity. Care is required, however, in the wholesale implementation of these recommendations without full consideration of the desired effects and overall management goals

    Habitat and Scale Shape the Demographic Fate of the Keystone Sea Urchin Paracentrotus lividus in Mediterranean Macrophyte Communities

    Get PDF
    Demographic processes exert different degrees of control as individuals grow, and in species that span several habitats and spatial scales, this can influence our ability to predict their population at a particular life-history stage given the previous life stage. In particular, when keystone species are involved, this relative coupling between demographic stages can have significant implications for the functioning of ecosystems. We examined benthic and pelagic abundances of the sea urchin Paracentrotus lividus in order to: 1) understand the main life-history bottlenecks by observing the degree of coupling between demographic stages; and 2) explore the processes driving these linkages. P. lividus is the dominant invertebrate herbivore in the Mediterranean Sea, and has been repeatedly observed to overgraze shallow beds of the seagrass Posidonia oceanica and rocky macroalgal communities. We used a hierarchical sampling design at different spatial scales (100 s, 10 s and <1 km) and habitats (seagrass and rocky macroalgae) to describe the spatial patterns in the abundance of different demographic stages (larvae, settlers, recruits and adults). Our results indicate that large-scale factors (potentially currents, nutrients, temperature, etc.) determine larval availability and settlement in the pelagic stages of urchin life history. In rocky macroalgal habitats, benthic processes (like predation) acting at large or medium scales drive adult abundances. In contrast, adult numbers in seagrass meadows are most likely influenced by factors like local migration (from adjoining rocky habitats) functioning at much smaller scales. The complexity of spatial and habitat-dependent processes shaping urchin populations demands a multiplicity of approaches when addressing habitat conservation actions, yet such actions are currently mostly aimed at managing predation processes and fish numbers. We argue that a more holistic ecosystem management also needs to incorporate the landscape and habitat-quality level processes (eutrophication, fragmentation, etc.) that together regulate the populations of this keystone herbivore
    • …
    corecore