12,417 research outputs found

    B Mixing and Lifetimes at the Tevatron

    Get PDF
    The Tevatron collider at Fermilab provides a very rich environment for the study of b-hadrons. Both the D0 and CDF experiments have collected a sample of about 1 fb^{-1}. We report results on three topics: b-hadron lifetimes, polarization amplitudes and the decay width difference in Bs to Jpsi Phi, and Bs mixing.Comment: Flavor Physics & CP Violation Conference, Vancouver, 200

    X-ray sources as tracers of the large-scale structure in the Universe

    Full text link
    We review the current status of studies of large-scale structure in the X-ray Universe. After motivating the use X-rays for cosmological purposes, we discuss the various approaches used on different angular scales including X-ray background multipoles, cross-correlations of the X-ray background with galaxy catalogues, clustering of X-ray selected sources and small-scale fluctuations and anisotropies in the X-ray background. We discuss the implications of the above studies for the bias parameter of X-ray sources, which is likely to be moderate for X-ray selected AGN and the X-ray background (~1-2). We finally outline how all-sky X-ray maps at hard X-rays and medium surveys with large sky coverage could provide important tests for the cosmological models.Comment: Invited review presented at the Workshop X-ray Astronomy'99: Stellar endpoints, AGN and the diffuse X-ray background (Astrophys Lett and Comm

    On the origin of the X-ray emission from a narrow-line radioquasar at z>1

    Full text link
    We present new XMM-Newton X-ray observations of the z=1.246 narrow-line radioquasar RX J1011.2+5545 serendipitously discovered by ROSAT. The flat X-ray spectrum previously measured by ROSAT and ASCA is shown to be the result of a steep Gamma~1.8 power law spectrum seen through a moderate intrinsic absorbing column NH~4E21 cm^-2. The position of the X-ray source is entirely coincident with the nucleus of the radio source that we have resolved in new sensitive VLA observations at 3.6 and 6 cm, implying that scattering in the radio lobes is not responsible for the bulk of X-ray emission. In the EPIC pn image, a faint patch of X-ray emission is apparent 14'' to the NE of the main X-ray source. The former is positionally coincident with an apparently extended optical object with R~21.9, but there is no associated radio emission, thus ruling out the possibility that this represents a hotspot in a jet emanating from the primary X-ray source. No reflection features are detected in the X-ray spectrum of the narrow-line radioquasar, although an Fe line with equivalent width of up to 600 eV cannot be ruled out.Comment: 7 pages, 6 figures, MNRAS in the pres

    The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering

    Get PDF
    Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development
    • …
    corecore