216 research outputs found

    Red Iberoamericana de Toxicología y Seguridad Química

    Get PDF
    La Red Iberoamericana de Toxicología y Seguridad Química RITSQ, se inicia en marzo de 2008 y desde entonces ha tenido 69.930 visitas a la página web de la misma, se han registrado 1.133 personas de 41 países y desde entonces hemos realizado y presentado 66 carteles en Reuniones, Conferencias y Reuniones donde se mantienen de forma constante los Objetivos de la RITSQ: 1. Coordinar la participación de los diferentes grupos existentes en universidades y organismos de investigación de Iberoamérica, implicados en estudios relacionados con la Toxicología, 2. Fortalecer la colaboración y el intercambio académico entre los programas de Doctorado y Maestría de diferentes países iberoamericanos que tengan como objeto el estudio y la investigación en Toxicología o áreas relacionadas, 3. Favorecer la realización de proyectos de investigación conjuntos entre docentes e investigadores de Iberoamérica, pasantías estudiantiles y eventos académicos; 4. Profundizar en el estudio de métodos de ensayo de corta y larga duración utilizados en la evaluación de la carcinogenicidad, la mutagenicidad y la toxicidad para la reproducción de sustancias y mezclas de productos químicos, 5. Desarrollar y estandarizar métodos analíticos para la identificación y determinación de biomarcadores de exposición, efecto y .susceptibilidad para sustancias y productos químicos en el hombre y el medio ambiente; 6. Aplicar métodos de evaluación del riesgo para la salud humana y el medio ambiente de sustancias y productos químicos, 7. Fomentar el intercambio científico de profesionales interesados alimentaria; y 8. Propiciar el uso de métodos alternativos a la experimentación animal (www.remanet.net).Peer reviewe

    Rapid within- and transgenerational changes in thermal tolerance and fitness in variable thermal landscapes

    Get PDF
    Phenotypic plasticity may increase the performance and fitness and allow organisms to cope with variable environmental conditions. We studied within-generation plasticity and transgenerational effects of thermal conditions on temperature tolerance and demographic parameters in Drosophila melanogaster. We employed a fully factorial design, in which both parental (P) and offspring generations (F1) were reared in a constant or a variable thermal environment. Thermal variability during ontogeny increased heat tolerance in P, but with demographic cost as this treatment resulted in substantially lower survival, fecundity, and net reproductive rate. The adverse effects of thermal variability (V) on demographic parameters were less drastic in flies from the F1, which exhibited higher net reproductive rates than their parents. These compensatory responses could not totally overcome the challenges of the thermally variable regime, contrasting with the offspring of flies raised in a constant temperature (C) that showed no reduction in fitness with thermal variation. Thus, the parental thermal environment had effects on thermal tolerance and demographic parameters in fruit fly. These results demonstrate how transgenerational effects of environmental conditions on heat tolerance, as well as their potential costs on other fitness components, can have a major impact on populations’ resilience to warming temperatures and more frequent thermal extremes

    Range-Expanding Populations of a Globally Introduced Weed Experience Negative Plant-Soil Feedbacks

    Get PDF
    BACKGROUND: Biological invasions are fundamentally biogeographic processes that occur over large spatial scales. Interactions with soil microbes can have strong impacts on plant invasions, but how these interactions vary among areas where introduced species are highly invasive vs. naturalized is still unknown. In this study, we examined biogeographic variation in plant-soil microbe interactions of a globally invasive weed, Centaurea solstitialis (yellow starthistle). We addressed the following questions (1) Is Centaurea released from natural enemy pressure from soil microbes in introduced regions? and (2) Is variation in plant-soil feedbacks associated with variation in Centaurea's invasive success? METHODOLOGY/PRINCIPAL FINDINGS: We conducted greenhouse experiments using soils and seeds collected from native Eurasian populations and introduced populations spanning North and South America where Centaurea is highly invasive and noninvasive. Soil microbes had pervasive negative effects in all regions, although the magnitude of their effect varied among regions. These patterns were not unequivocally congruent with the enemy release hypothesis. Surprisingly, we also found that Centaurea generated strong negative feedbacks in regions where it is the most invasive, while it generated neutral plant-soil feedbacks where it is noninvasive. CONCLUSIONS/SIGNIFICANCE: Recent studies have found reduced below-ground enemy attack and more positive plant-soil feedbacks in range-expanding plant populations, but we found increased negative effects of soil microbes in range-expanding Centaurea populations. While such negative feedbacks may limit the long-term persistence of invasive plants, such feedbacks may also contribute to the success of invasions, either by having disproportionately negative impacts on competing species, or by yielding relatively better growth in uncolonized areas that would encourage lateral spread. Enemy release from soil-borne pathogens is not sufficient to explain the success of this weed in such different regions. The biogeographic variation in soil-microbe effects indicates that different mechanisms may operate on this species in different regions, thus establishing geographic mosaics of species interactions that contribute to variation in invasion success

    Experimental admixture among geographically disjunct populations of an invasive plant yields a global mosaic of reproductive incompatibility and heterosis

    Get PDF
    1. Invasive species have the ability to rapidly adapt in the new regions where they are introduced. Classic evolutionary theory predicts that the accumulation of genetic differences over time in allopatric isolation may lead to reproductive incompatibilities resulting in decreases in reproductive success and, eventually, to speciation. However, experimental evidence for this theoretical prediction in the context of invasive species is lacking. We aimed to test for the potential of allopatry to determine reproductive success of invasive plants, by experimentally admixing genotypes from six different native and non‐native regions of Centaurea solstitialis, an invasive forb for which preliminary studies have detected some degree of reproductive isolation between one native and non‐native region. 2. We grew plants under common garden conditions and outcrossed individuals originating from different source populations in the native and introduced range to evaluate reproductive success in terms of seed to ovule ratio produced. We also assessed geographical and genetic isolation among C. solstitialis regions as a potential driving factor of reproductive success. 3. Experimental admixture generated mixed fitness effects, including significant increases, decreases and no differences in reproductive success as compared to crosses within population (control). Centaurea solstitialis invasive populations in the Americas generated preponderantly negative fitness interactions, regardless of the pollen source, suggesting selection against immigrants and reinforcement. Other non‐native populations (Australia) as well as individuals from the native range of Spain demonstrated an increase in fitness for between‐region crosses, indicating inbreeding. These differences show an asymmetrical response to inter‐regional gene flow, but no evidence of isolation by distance. 4. Synthesis. The speed of adaptation and the accumulation of reproductive incompatibilities among allopatric populations of invasive species might be more rapid than previously assumed. Our data show a global mosaic of reproductive outputs, showcasing an array of evolutionary processes unfolding during colonization at large biogeographical scales

    Extensive analysis of native and non-native Centaurea solstitialis L. populations across the world shows no traces of polyploidization

    Get PDF
    Centaurea solstitialis L. (yellow starthistle, Asteraceae) is a Eurasian native plant introduced as an exotic into North and South America, and Australia, where it is regarded as a noxious invasive. Changes in ploidy level have been found to be responsible for numerous plant biological invasions, as they are involved in trait shifts critical to invasive success, like increased growth rate and biomass, longer life-span, or polycarpy. C. solstitialis had been reported to be diploid (2n = 2x = 16 chromosomes), however, actual data are scarce and sometimes contradictory. We determined for the first time the absolute nuclear DNA content by flow cytometry and estimated ploidy level in 52 natural populations of C. solstitialis across its native and non-native ranges, around the world. All the C. solstitialis populations screened were found to be homogeneously diploid (average 2C value of 1.72 pg, SD = ±0.06 pg), with no significant variation in DNA content between invasive and non-invasive genotypes. We did not find any meaningful difference among the extensive number of native and non-native C. solstitialis populations sampled around the globe, indicating that the species invasive success is not due to changes in genome size or ploidy level

    Estimating Bacterial diversity in scirtothrips dorsalis (thysanoptera: thripidae) Via Next generation sequencing

    Get PDF
    The last 2 decades have produced a better understanding of insect-microbial associations and yielded some important opportunities for insect control. However, most of our knowledge comes from model systems. Thrips (Thysanoptera: Thripidae) have been understudied despite their global importance as invasive species, plant pests and disease vectors. Using a culture and primer independent next-generation sequencing and metagenomics pipeline, we surveyed the bacteria of the globally important pest, Scirtothrips dorsalis Hood. The most abundant bacterial phyla identified were Actinobacteria and Proteobacteria and the most abundant genera were Propionibacterium, Stenotrophomonas, and Pseudomonas. A total of 189 genera of bacteria were identified. The absence of any vertically transferred symbiont taxa commonly found in insects is consistent with other studies suggesting that thrips primarilly acquire resident microbes from their environment. This does not preclude a possible beneficial/intimate association between S. dorsalis and the dominant taxa identified and future work should determine the nature of these associations

    Autophagosomes cooperate in the degradation of intracellular C-terminal fragments of the amyloid precursor protein <i>via </i>the MVB/lysosomal pathway

    Get PDF
    © FASEB. Brain regions affected by Alzheimer disease (AD) displaywell-recognized early neuropathologic features in the endolysosomal and autophagy systems of neurons, including enlargement of endosomal compartments, progressive accumulation of autophagic vacuoles, and lysosomal dysfunction.Although the primary causes of these disturbances are still under investigation, a growing body of evidence suggests that the amyloid precursor protein (APP) intracellular C-terminal fragment b (C99), generated by cleavage of APP by b-site APP cleaving enzyme 1 (BACE-1), is the primary cause of the endosome enlargement inADand the earliest initiator of synaptic plasticity and long-termmemory impairment. The aimof the present study was to evaluate the possible relationship between the endolysosomal degradation pathway and autophagy on the proteolytic processing and turnover of C99. We found that pharmacologic treatments that either inhibit autophagosomeformationorblock the fusionof autophagosomes to

    Strong microsite control of seedling recruitment in tundra

    Get PDF
    The inclusion of environmental variation in studies of recruitment is a prerequisite for realistic predictions of the responses of vegetation to a changing environment. We investigated how seedling recruitment is affected by seed availability and microsite quality along a steep environmental gradient in dry tundra. A survey of natural seed rain and seedling density in vegetation was combined with observations of the establishment of 14 species after sowing into intact or disturbed vegetation. Although seed rain density was closely correlated with natural seedling establishment, the experimental seed addition showed that the microsite environment was even more important. For all species, seedling emergence peaked at the productive end of the gradient, irrespective of the adult niches realized. Disturbance promoted recruitment at all positions along the environmental gradient, not just at high productivity. Early seedling emergence constituted the main temporal bottleneck in recruitment for all species. Surprisingly, winter mortality was highest at what appeared to be the most benign end of the gradient. The results highlight that seedling recruitment patterns are largely determined by the earliest stages in seedling emergence, which again are closely linked to microsite quality. A fuller understanding of microsite effects on recruitment with implications for plant community assembly and vegetation change is provided

    Catálogo de las plantas vasculares de Chile

    Get PDF
    A catalog of vascular plants growing in Chile is presented. It is organized by divisions, Pteridophyta (Lycopodiopsida and Polypodiopsida), Pinophyta (Gnetopsida and Pinopsida) and Magnoliophyta (Liliopsida and Magnoliopsida), and within each group, the taxonomic hierarchies (Family, Genus, Species and infraspecific taxa) are arranged alphabetically. In accordance with this catalogue, the flora of vascular plants of Chile comprise 186 families, 1121 genera and 5471 species, 4655 species are native, 2145 of these are endemic to Chile and 816 species are introduced.Se presenta un catálogo de las plantas vasculares que crecen en Chile. Está organizado por divisiones, Pteridophyta (Lycopodiopsida y Polypodiopsida), Pinophyta (Gnetopsida y Pinopsida) y Magnoliophyta (Liliopsida y Magnoliopsida), y dentro de cada grupo, las jerarquías taxonómicas (Familia, Género, Especies y taxones infraespecíficos) están ordenados alfabéticamente. Se incluye además un índice alfabético de géneros con indicación de la familia y grupo a que pertenecen. De acuerdo a este catálogo la flora de las plantas vasculares que crecen en Chile, comprende 186 familias, 1121 géneros y especies, de éstas, 4655 corresponden a especies nativas, de las cuales 2145 son endémicas de Chile y 816 las especies introducidas

    The Alpine Cushion Plant Silene acaulis as Foundation Species: A Bug’s-Eye View to Facilitation and Microclimate

    Get PDF
    Alpine ecosystems are important globally with high levels of endemic and rare species. Given that they will be highly impacted by climate change, understanding biotic factors that maintain diversity is critical. Silene acaulis is a common alpine nurse plant shown to positively influence the diversity and abundance of organisms–predominantly other plant species. The hypothesis that cushion or nurse plants in general are important to multiple trophic levels has been proposed but rarely tested. Alpine arthropod diversity is also largely understudied worldwide, and the plant-arthropod interactions reported are mostly negative, that is,. herbivory. Plant and arthropod diversity and abundance were sampled on S. acaulis and at paired adjacent microsites with other non-cushion forming vegetation present on Whistler Mountain, B.C., Canada to examine the relative trophic effects of cushion plants. Plant species richness and abundance but not Simpson’s diversity index was higher on cushion microsites relative to other vegetation. Arthropod richness, abundance, and diversity were all higher on cushion microsites relative to other vegetated sites. On a microclimatic scale, S. acaulis ameliorated stressful conditions for plants and invertebrates living inside it, but the highest levels of arthropod diversity were observed on cushions with tall plant growth. Hence, alpine cushion plants can be foundation species not only for other plant species but other trophic levels, and these impacts are expressed through both direct and indirect effects associated with altered environmental conditions and localized productivity. Whilst this case study tests a limited subset of the membership of alpine animal communities, it clearly demonstrates that cushion-forming plant species are an important consideration in understanding resilience to global changes for many organisms in addition to other plants
    corecore