21 research outputs found

    Four new species of arbuscular mycorrhizal fungi (Glomeromycota) associated with endemic plants from ultramafic soils of New Caledonia

    No full text
    International audienceFour new species of arbuscular mycorrhizal (AM) fungi (Glomeromycota) were isolated from the rhizosphere of endemic metallophytic plants in ultramafic soils in New Caledonia (South Pacific) and propagated on Sorghum vulgare. Acaulospora saccata and A. fragilissima are placed in the Acaulosporaceae, Scutellospora ovalis in the Gigasporaceae, and Rhizophagus neocaledonicus in the Glomeraceae. The novelty of these species is supported by morphological characters of spores and phylogenetic analyses of sequences of the rDNA region, comprising partial small subunit rRNA gene, the internal transcribed spacers, 5.8S rRNA gene, and the partial large subunit rRNA gene. New Caledonia is known for its high degree of endemism in plants, which is due to its geographic position and geological history. This is the first taxonomic study exploring local Glomeromycota of this island, which may help to address the question of possible AMF endemism in future studies

    Effects of ultramafic topsoil stockpiling during mine activities on its microbial diversity and other microbiological and physicochemical characteristics

    No full text
    International audienceNowadays, ecological restoration is considered the best solution for the rehabilitation of mining-degraded areas, particularly when it concerns valuable ecosystems. This is the case in New Caledonia, a hot spot of biodiversity, with 82% of endemic plant species in ultramafic soils. The use of topsoil to restore mined areas is an important practice. However, topsoil stockpiling can reduce soil fertility. We studied the evolution of different properties of two topsoils stored in 10 m height piles on mined areas, in order to characterize possible degradations. The effects of storage duration, depth, and topsoil origin were analyzed, focusing mainly on bacterial and fungal diversity assessed after bar-coded pyrosequencing, and expressed by operational taxonomic units (OTU). Microbial activity (carbon dioxyde production), arbuscular mycorrhizal fungi (AMF) spore numbers, bulk density and different other physicochemical characteristics were also determined. The studied ultramafic soils were characterized by a relatively high microbial diversity with 45 bacterial phyla and 7 fungal phyla. Bacterial and fungal OTU numbers did not vary significantly after 12 months of storage, but the community structures of these groups were changed. AMF diversity was significantly reduced by the storage. Microbial activity, AMF spore numbers, soil organic carbon, total nitrogen, cation exchange capacity, and carbon to nitrogen ratio (C/N) decreased significantly starting from 3 to 9 months of topsoil storage. In contrast, soil bulk density and pH increased, and extractable concentrations of potentially toxic metals varied only slightly. All the changes induced by topsoil stockpiling in microbial population structure, AMF diversity, and other biotic and abiotic traits may negatively affect soil functions and create perturbations of the reconstructed ecosystems after revegetation. It is then necessary to reduce the storage of ultramafic topsoils as far as possible. In all cases, the stockpiling should not exceed six months before its use in ecosystem restoration. It is also recommended to reduce the height of the stockpiles, when possible, to 1 m or less to minimize the compaction and the anaerobiosis

    Combinations of different arbuscular mycorrhizal fungi improve fitness and metal tolerance of sorghum in ultramafic soil

    No full text
    International audienceResearch on arbuscular mycorrhizal fungi (AMF) in ultramafic soils has principally focused on ecological restorationwhereas little attention has been given to agriculture. The present study aims at understanding ifmixtures of different AMF species from a New Caledonian ultramafic soil induced a better plant fitness and lowercontents of potentially toxic metals in aerial parts of a crop plant than single species inoculants. Sorghum vulgareplants were inoculated using six AMF species separately and in different mixtures of these species in a glasshouseexperiment in ultramafic soil. The tested inocula showed very different effects on plant fitness. Results highlightthat, when sorghum is grown in ultramafic soil, AMF mixes were more efficient than single species inoculation inalleviating abiotic stresses by reducing translocation of potentially toxic metals to the aerial part of the plant andthereby improving the fitness of the plants. Our findings point out the utility of arbuscular mycorrhizal biotechnologyfor agricultural ultramafic soils

    New method for the identification of arbuscular mycorrhizal fungi by proteomic-based biotyping of spores using MALDI-TOF-MS

    No full text
    Abstract Arbuscular mycorrhizal fungi (AMF, Glomeromycota) are mutualistic symbionts associated with majority of land plants. These fungi play an important role in plant growth, but their taxonomic identification remains a challenge for academic research, culture collections and inoculum producers who need to certify their products. Identification of these fungi was traditionally performed based on their spore morphology. DNA sequence data have successfully been used to study the evolutionary relationships of AMF, develop molecular identification tools and assess their diversity in the environment. However, these methods require considerable expertise and are not well-adapted for “routine” quality control of culture collections and inoculum production. Here, we show that Matrix-Assisted Laser Desorption Ionisation Time of Flight Mass Spectrometry proteomic-based biotyping is a highly efficient approach for AMF identification. Nineteen isolates belonging to fourteen species, seven genera and five families were clearly differentiated by MALDI biotyping at the species level, and intraspecific differentiation was achieved for the majority. AMF identification by MALDI biotyping could be highly useful, not only for research but also in agricultural and environmental applications. Fast, accurate and inexpensive molecular mass determination and the possibility of automation make MALDI-TOF-MS a real alternative to conventional morphological and molecular methods for AMF identification

    Importance and roles of arbuscular mycorrhizal fungi in new Caledonian ultramafic soils

    No full text
    International audienceOur knowledge about New Caledonian serpentine ecosystems has increased greatly during the past half-century, mainly thanks to Jaffré's group. However, research on soil microflora and plant symbionts started only in the nineties and was mainly published during the last two decades. We aim to synthesize these studies, focusing particularly on arbuscular mycorrhizal fungi (AMF). Research on AMF consists firstly of a global and inventory approach aiming to produce a basic but essential lacking knowledge. These studies showed that AMF are abundant in ultramafic soils and concerned nearly all plant species of these ecosystems. Even Nihyperaccumulator plants and sedges, generally considered non-mycorrhizal, were found to be functionally colonized by AMF in New Caledonian ultramafic soils. The adaptation of AMF communities to the extreme conditions of these soils led to high levels of metal tolerance (particularly to Ni) and noticeable originality of the taxa. The influence of these symbionts on plant growth and adaptation was assessed in greenhouse and field conditions. An accurate selection of AMF isolates that improve plant growth, and plant metal tolerance was performed. It was demonstrated that combinations of AMF isolates with complementary functional traits showed highly synergistic effects on plant development. Finally, a partnership with a biotechnological company led to the production of an efficient commercial inoculant now used in the ecological restoration of mine-degraded areas. Today studies are focused mainly on the additive effects of AMF and mycorrhiza-helper bacteria

    Data from: Distribution patterns of microbial communities in ultramafic landscape: a metagenetic approach highlights the strong relationships between diversity and environmental traits

    No full text
    Microbial species richness and assemblages across ultramafic ecosystems were investigated to assess the relationship between their distributional patterns and environmental traits. The structure of microorganism communities in the Koniambo massif, New Caledonia, was investigated using a metagenetic approach correlated with edaphic and floristic factors. Vegetation cover and soil properties significantly shaped the large phylogenetic distribution of operational taxonomic unit within microbial populations, with a mean per habitat of 3.477 (±317) for bacteria and 712 (±43) for fungi. Using variance partitioning, we showed that the effect of aboveground vegetation was the most significant descriptor for both bacterial and fungal communities. The floristic significant predictors explained 43% of the variation for both the bacterial and fungal community structures, while the edaphic significant predictors explained only 32% and 31% of these variations, respectively. These results confirm the previous hypothesis that the distribution of microorganisms was more structured by the vegetation cover rather than the edaphic characteristics and that microbial diversity is not limited in ultramafic ecosystems
    corecore