10,193 research outputs found
The high-pressure behavior of CaMoO4
We report a high-pressure study of tetragonal scheelite-type CaMoO4 up to 29
GPa. In order to characterize its high-pressure behavior, we have combined
Raman and optical-absorption measurements with density-functional theory
calculations. We have found evidence of a pressure-induced phase transition
near 15 GPa. Experiments and calculations agree in assigning the high-pressure
phase to a monoclinic fergusonite-type structure. The reported results are
consistent with previous powder x-ray-diffraction experiments, but are in
contradiction with the conclusions obtained from earlier Raman measurements,
which support the existence of more than one phase transition in the pressure
range covered by our studies. The observed scheelite-fergusonite transition
induces significant changes in the electronic band gap and phonon spectrum of
CaMoO4. We have determined the pressure evolution of the band gap for the low-
and high-pressure phases as well as the frequencies and pressure dependences of
the Raman-active and infrared-active modes. In addition, based upon
calculations of the phonon dispersion of the scheelite phase, carried out at a
pressure higher than the transition pressure, we propose a possible mechanism
for the reported phase transition. Furthermore, from the calculations we
determined the pressure dependence of the unit-cell parameters and atomic
positions of the different phases and their room-temperature equations of
state. These results are compared with previous experiments showing a very good
agreement. Finally, information on bond compressibility is reported and
correlated with the macroscopic compressibility of CaMoO4. The reported results
are of interest for the many technological applications of this oxide.Comment: 36 pages, 10 figures, 8 table
Deletion of Tsc2 in nociceptors reduces target innervation, ion channel expression, and sensitivity to heat
AbstractThe mechanistic target of rapamycin complex 1 (mTORC1) is known to regulate cellular growth pathways, and its genetic activation is sufficient to enhance regenerative axon growth following injury to the central or peripheral nervous systems. However, excess mTORC1 activation may promote innervation defects, and mTORC1 activity mediates injury-induced hypersensitivity, reducing enthusiasm for the pathway as a therapeutic target. While mTORC1 activity is required for full expression of some pain modalities, the effects of pathway activation on nociceptor phenotypes and sensory behaviors are currently unknown. To address this, we genetically activated mTORC1 in mouse peripheral sensory neurons by conditional deletion of its negative regulator Tuberous Sclerosis Complex 2 (Tsc2). Consistent with the well-known role of mTORC1 in regulating cell size, soma size and axon diameter of C-nociceptors were increased in Tsc2-deleted mice. Glabrous skin and spinal cord innervation by C-fiber neurons were also disrupted. Transcriptional profiling of nociceptors enriched by fluorescence-associated cell sorting (FACS) revealed downregulation of multiple classes of ion channels as well as reduced expression of markers for peptidergic nociceptors in Tsc2-deleted mice. In addition to these changes in innervation and gene expression, Tsc2-deleted mice exhibited reduced noxious heat sensitivity and decreased injury-induced cold hypersensitivity, but normal baseline sensitivity to cold and mechanical stimuli. Together, these data show that excess mTORC1 activity in sensory neurons produces changes in gene expression, neuron morphology and sensory behavior.</jats:p
Genetic drift at expanding frontiers promotes gene segregation
Competition between random genetic drift and natural selection plays a
central role in evolution: Whereas non-beneficial mutations often prevail in
small populations by chance, mutations that sweep through large populations
typically confer a selective advantage. Here, however, we observe chance
effects during range expansions that dramatically alter the gene pool even in
large microbial populations. Initially well-mixed populations of two
fluorescently labeled strains of Escherichia coli develop well-defined,
sector-like regions with fractal boundaries in expanding colonies. The
formation of these regions is driven by random fluctuations that originate in a
thin band of pioneers at the expanding frontier. A comparison of bacterial and
yeast colonies (Saccharomyces cerevisiae) suggests that this large-scale
genetic sectoring is a generic phenomenon that may provide a detectable
footprint of past range expansions.Comment: Please visit http://www.pnas.org/content/104/50/19926.abstract for
published articl
Measurement of Dielectric Suppression of Bremsstrahlung
In 1953, Ter-Mikaelian predicted that the bremsstrahlung of low energy
photons in a medium is suppressed because of interactions between the produced
photon and the electrons in the medium. This suppression occurs because the
emission takes place over on a long distance scale, allowing for destructive
interference between different instantaneous photon emission amplitudes. We
present here measurements of bremsstrahlung cross sections of 200 keV to 20 MeV
photons produced by 8 and 25 GeV electrons in carbon and gold targets. Our data
shows that dielectric suppression occurs at the predicted level, reducing the
cross section up to 75 percent in our data.Comment: 11 pages, format is postscript file, gzip-ed, uuencode-e
Influence of aerosol and surface reflectance variability on hyperspectral observed radiance
Current aerosol retrievals based on visible and near infrared remote-sensing, are prone to loss of accuracy, where the assumptions of the applied algorithm are violated. This happens mostly over land and it is related to misrepresentation of specific aerosol conditions or surface properties. New satellite missions, based on high spectral resolution instruments, such as PRISMA (Hyperspectral Precursor of the Application Mission), represent a valuable opportunity to improve the accuracy of &tau;<sup>a</sup><sub>550</sub> retrievable from a remote-sensing system developing new atmospheric measurement techniques. This paper aims to address the potential of these new observing systems in more accurate retrieving &tau;<sup>a</sup><sub>550</sub>, specifically over land in heterogeneous and/or homogeneous areas composed by dark and bright targets. The study shows how the variation of the hyperspectral observed radiance can be addressed to recognise a variation of &Delta;&tau;<sup>a</sup><sub>550</sub> = 0.02. The goal has been achieved by using simulated radiances by combining two aerosol models (urban and continental) and two reflecting surfaces: dark (represented by water) and bright (represented by sand) for the PRISMA instrument, considering the environmental contribution of the observed radiance, i.e., the adjacency effect. Results showed that, in the continental regime, the expected instrument sensitivity would allow for retrieval accuracy of the aerosol optical thickness at 550 nm of 0.02 or better, with a dark surface surrounded by dark areas. The study also showed that for the urban regime, the surface plays a more significant role, with a bright surface surrounded by dark areas providing favourable conditions for the aerosol load retrievals, and dark surfaces representing less suitable situations for inversion independently of the surroundings. However, over all, the results obtained provide evidence that high resolution observations of Earth spectrum between 400 and 1000 nm would allow for a significant improvement of the accuracy of the &tau;<sup>a</sup><sub>550</sub> for anthropogenic/natural aerosols over land
Inference of population splits and mixtures from genome-wide allele frequency data
Many aspects of the historical relationships between populations in a species
are reflected in genetic data. Inferring these relationships from genetic data,
however, remains a challenging task. In this paper, we present a statistical
model for inferring the patterns of population splits and mixtures in multiple
populations. In this model, the sampled populations in a species are related to
their common ancestor through a graph of ancestral populations. Using
genome-wide allele frequency data and a Gaussian approximation to genetic
drift, we infer the structure of this graph. We applied this method to a set of
55 human populations and a set of 82 dog breeds and wild canids. In both
species, we show that a simple bifurcating tree does not fully describe the
data; in contrast, we infer many migration events. While some of the migration
events that we find have been detected previously, many have not. For example,
in the human data we infer that Cambodians trace approximately 16% of their
ancestry to a population ancestral to other extant East Asian populations. In
the dog data, we infer that both the boxer and basenji trace a considerable
fraction of their ancestry (9% and 25%, respectively) to wolves subsequent to
domestication, and that East Asian toy breeds (the Shih Tzu and the Pekingese)
result from admixture between modern toy breeds and "ancient" Asian breeds.
Software implementing the model described here, called TreeMix, is available at
http://treemix.googlecode.comComment: 28 pages, 6 figures in main text. Attached supplement is 22 pages, 15
figures. This is an updated version of the preprint available at
http://precedings.nature.com/documents/6956/version/
Mass closure on the chemical species in size-segregated atmospheric aerosol collected in an urban area of the Po Valley, Italy
International audienceA complete size segregated chemical characterisation was carried out for aerosol samples collected in the urban area of Bologna over a period of one year, using five-stage low pressure Berner impactors. An original dual-substrate technique was adopted to obtain samples suitable for a complete chemical characterisation. Total mass, inorganic, and organic components were analysed as a function of size, and a detailed characterisation of the water soluble organic compounds was also performed by means of a previously developed methodology, based on HPLC separation of organic compounds according to their acid character and functional group analysis by Proton Nuclear Magnetic Resonance. Chemical mass closure of the collected samples was reached to within a few percent on average in the submicron aerosol range, while a higher unknown fraction in the coarse aerosol range was attributed to soil-derived species not analysed in this experiment. Comparison of the functional group analysis results with model results simulating water soluble organic compound production by gas-to-particle conversion of anthropogenic VOCs showed that this pathway provides a minor contribution to the organic composition of the aerosol samples in the urban area of Bologna
Chemical mass balance of size-segregated atmospheric aerosol in an urban area of the Po Valley, Italy
International audienceA complete size segregated chemical characterisation was carried out for aerosol samples collected in the urban area of Bologna over a period of one year, using five-stage low pressure Berner impactors. An original dual-substrate technique was adopted to obtain samples suitable for a complete chemical characterisation. Total mass, inorganic, and organic components were analysed as a function of size, and a detailed characterisation of the water soluble organic compounds was also performed by means of a previously developed methodology, based on HPLC separation of organic compounds according to their acid character and functional group analysis by Proton Nuclear Magnetic Resonance. Chemical mass closure of the collected samples was reached to within a few percent on average in the submicron aerosol range, while a higher unknown fraction in the coarse aerosol range was attributed to soil-derived species not analysed in this experiment. Comparison of the functional group analysis results with model results simulating water soluble organic compound production by gas-to-particle conversion of anthropogenic VOCs showed that this pathway provides a minor contribution to the organic composition of the aerosol samples in the urban area of Bologna
Top quark pair + jet production at next-to-leading order: NLO QCD corrections to gg -> t tbar g
The reaction pp/pbar p -> t tbar jet+X is an important background process for
Higgs boson searches in the mass range below 200 GeV. Apart from that it is
also an ideal laboratory for precision measurements in the top quark sector.
Both applications require a solid theoretical prediction, which can be achieved
only through a full next-to-leading order (NLO) calculation. In this work we
describe the NLO computation of the subprocess gg -> t tbar g.Comment: To appear in the proceedings of 7th DESY Workshop on Elementary
Particle Theory: Loops and Legs in Quantum Field Theory, Zinnowitz, Germany,
25-30 Apr 200
Dirac Neutrino Dark Matter
We investigate the possibility that dark matter is made of heavy Dirac
neutrinos with mass in the range [O(1) GeV- a few TeV] and with suppressed but
non-zero coupling to the Standard Model Z as well as a coupling to an
additional Z' gauge boson. The first part of this paper provides a
model-independent analysis for the relic density and direct detection in terms
of four main parameters: the mass, the couplings to the Z, to the Z' and to the
Higgs. These WIMP candidates arise naturally as Kaluza-Klein states in
extra-dimensional models with extended electroweak gauge group SU(2)_L* SU(2)_R
* U(1). They can be stable because of Kaluza-Klein parity or of other discrete
symmetries related to baryon number for instance, or even, in the low mass and
low coupling limits, just because of a phase-space-suppressed decay width. An
interesting aspect of warped models is that the extra Z' typically couples only
to the third generation, thus avoiding the usual experimental constraints. In
the second part of the paper, we illustrate the situation in details in a
warped GUT model.Comment: 35 pages, 25 figures; v2: JCAP version; presentation and plots
improved, results unchange
- …
