197 research outputs found

    A diagonally inverted LU implicit multigrid scheme

    Get PDF
    A new Diagonally Inverted LU Implicit scheme is developed within the framework of the multigrid method for the 3-D unsteady Euler equations. The matrix systems that are to be inverted in the LU scheme are treated by local diagonalizing transformations that decouple them into systems of scalar equations. Unlike the Diagonalized ADI method, the time accuracy of the LU scheme is not reduced since the diagonalization procedure does not destroy time conservation. Even more importantly, this diagonalization significantly reduces the computational effort required to solve the LU approximation and therefore transforms it into a more efficient method of numerically solving the 3-D Euler equations

    Synthesis and structural characterization of a mimetic membrane-anchored prion protein

    Get PDF
    During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP

    The gut-associated lymphoid tissues in the small intestine, not the large intestine, play a major role in oral prion disease pathogenesis

    Get PDF
    Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. IMPORTANCE Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the small intestinal GALT are the essential early sites of prion accumulation. Furthermore, congruent infection with a large intestinal helminth (worm) around the time of oral prion exposure did not affect disease pathogenesis. This is important for our understanding of the factors that influence the risk of prion infection and the preclinical diagnosis of disease. The detection of prions within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, our data suggest that using these biopsy specimens may miss individuals in the early stages of oral prion infection and significantly underestimate the disease prevalence

    On the Propagation of Slip Fronts at Frictional Interfaces

    Get PDF
    The dynamic initiation of sliding at planar interfaces between deformable and rigid solids is studied with particular focus on the speed of the slip front. Recent experimental results showed a close relation between this speed and the local ratio of shear to normal stress measured before slip occurs (static stress ratio). Using a two-dimensional finite element model, we demonstrate, however, that fronts propagating in different directions do not have the same dynamics under similar stress conditions. A lack of correlation is also observed between accelerating and decelerating slip fronts. These effects cannot be entirely associated with static local stresses but call for a dynamic description. Considering a dynamic stress ratio (measured in front of the slip tip) instead of a static one reduces the above-mentioned inconsistencies. However, the effects of the direction and acceleration are still present. To overcome this we propose an energetic criterion that uniquely associates, independently on the direction of propagation and its acceleration, the slip front velocity with the relative rise of the energy density at the slip tip.Comment: 15 pages, 6 figure

    Rapid End-Point Quantitation of Prion Seeding Activity with Sensitivity Comparable to Bioassays

    Get PDF
    A major problem for the effective diagnosis and management of prion diseases is the lack of rapid high-throughput assays to measure low levels of prions. Such measurements have typically required prolonged bioassays in animals. Highly sensitive, but generally non-quantitative, prion detection methods have been developed based on prions' ability to seed the conversion of normally soluble protease-sensitive forms of prion protein to protease-resistant and/or amyloid fibrillar forms. Here we describe an approach for estimating the relative amount of prions using a new prion seeding assay called real-time quaking induced conversion assay (RT-QuIC). The underlying reaction blends aspects of the previously described quaking-induced conversion (QuIC) and amyloid seeding assay (ASA) methods and involves prion-seeded conversion of the alpha helix-rich form of bacterially expressed recombinant PrPC to a beta sheet-rich amyloid fibrillar form. The RT-QuIC is as sensitive as the animal bioassay, but can be accomplished in 2 days or less. Analogous to end-point dilution animal bioassays, this approach involves testing of serial dilutions of samples and statistically estimating the seeding dose (SD) giving positive responses in 50% of replicate reactions (SD50). Brain tissue from 263K scrapie-affected hamsters gave SD50 values of 1011-1012/g, making the RT-QuIC similar in sensitivity to end-point dilution bioassays. Analysis of bioassay-positive nasal lavages from hamsters affected with transmissible mink encephalopathy gave SD50 values of 103.5–105.7/ml, showing that nasal cavities release substantial prion infectivity that can be rapidly detected. Cerebral spinal fluid from 263K scrapie-affected hamsters contained prion SD50 values of 102.0–102.9/ml. RT-QuIC assay also discriminated deer chronic wasting disease and sheep scrapie brain samples from normal control samples. In principle, end-point dilution quantitation can be applied to many types of prion and amyloid seeding assays. End point dilution RT-QuIC provides a sensitive, rapid, quantitative, and high throughput assay of prion seeding activity

    Comparisons with amyloid-Ξ² reveal an aspartate residue that stabilizes fibrils of the aortic amyloid peptide medin

    Get PDF
    Aortic medial amyloid (AMA) is the most common localized human amyloid, occurring in virtually all of the Caucasian population over the age of 50. The main protein component of AMA, medin, readily assembles into amyloid-like fibrils in vitro. Despite the prevalence of AMA, little is known about the self-assembly mechanism of medin or the molecular architecture of the fibrils. The amino acid sequence of medin is strikingly similar to the sequence of the Alzheimer's disease (AD) amyloid-beta (AΞ²) polypeptides around the structural turn region of AΞ² where mutations associated with familial, early onset AD, have been identified. D25 and K30 of medin align with residues D23 and K28 of AΞ² that are known to form a stabilizing salt bridge in some fibril morphologies. Here we show that substituting D25 of medin with asparagine (D25N) impedes assembly into fibrils and stabilizes non-cytotoxic oligomers. Wild-type medin, by contrast, aggregates into Ξ²-sheet rich amyloid-like fibrils within 50 h. A structural analysis of wild-type fibrils by solid-state NMR suggests a molecular repeat unit comprising at least two extended Ξ²-strands, separated by a turn stabilized by a D25-K30 salt-bridge. We propose that D25 drives the assembly of medin by stabilizing the fibrillar conformation of the peptide, and is thus reminiscent of the influence of D23 on the aggregation of AΞ². Pharmacological comparisons of wild-type medin and D25N will help to ascertain the pathological significance of this poorly under-stood protein

    Abnormal Brain Iron Homeostasis in Human and Animal Prion Disorders

    Get PDF
    Neurotoxicity in all prion disorders is believed to result from the accumulation of PrP-scrapie (PrPSc), a Ξ²-sheet rich isoform of a normal cell-surface glycoprotein, the prion protein (PrPC). Limited reports suggest imbalance of brain iron homeostasis as a significant associated cause of neurotoxicity in prion-infected cell and mouse models. However, systematic studies on the generality of this phenomenon and the underlying mechanism(s) leading to iron dyshomeostasis in diseased brains are lacking. In this report, we demonstrate that prion disease–affected human, hamster, and mouse brains show increased total and redox-active Fe (II) iron, and a paradoxical increase in major iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) at the end stage of disease. Furthermore, examination of scrapie-inoculated hamster brains at different timepoints following infection shows increased levels of Tf with time, suggesting increasing iron deficiency with disease progression. Sporadic Creutzfeldt-Jakob disease (sCJD)–affected human brains show a similar increase in total iron and a direct correlation between PrP and Tf levels, implicating PrPSc as the underlying cause of iron deficiency. Increased binding of Tf to the cerebellar Purkinje cell neurons of sCJD brains further indicates upregulation of TfR and a phenotype of neuronal iron deficiency in diseased brains despite increased iron levels. The likely cause of this phenotype is sequestration of iron in brain ferritin that becomes detergent-insoluble in PrPSc-infected cell lines and sCJD brain homogenates. These results suggest that sequestration of iron in PrPSc–ferritin complexes induces a state of iron bio-insufficiency in prion disease–affected brains, resulting in increased uptake and a state of iron dyshomeostasis. An additional unexpected observation is the resistance of Tf to digestion by proteinase-K, providing a reliable marker for iron levels in postmortem human brains. These data implicate redox-iron in prion disease–associated neurotoxicity, a novel observation with significant implications for prion disease pathogenesis

    Customized birth weight for gestational age standards: Perinatal mortality patterns are consistent with separate standards for males and females but not for blacks and whites

    Get PDF
    BACKGROUND: Some currently available birth weight for gestational age standards are customized but others are not. We carried out a study to provide empirical justification for customizing such standards by sex and for whites and blacks in the United States. METHODS: We studied all male and female singleton live births and stillbirths (22 or more weeks of gestation; 500 g birth weight or over) in the United States in 1997 and 1998. White and black singleton live births and stillbirths were also examined. Qualitative congruence between gestational age-specific growth restriction and perinatal mortality rates was used as the criterion for identifying the preferred standard. RESULTS: The fetuses at risk approach showed that males had higher perinatal mortality rates at all gestational ages compared with females. Gestational age-specific growth restriction rates based on a sex-specific standard were qualitatively consistent with gestational age-specific perinatal mortality rates among males and females. However, growth restriction patterns among males and females based on a unisex standard could not be reconciled with perinatal mortality patterns. Use of a single standard for whites and blacks resulted in gestational age-specific growth restriction rates that were qualitatively congruent with patterns of perinatal mortality, while use of separate race-specific standards led to growth restriction patterns that were incompatible with patterns of perinatal mortality. CONCLUSION: Qualitative congruence between growth restriction and perinatal mortality patterns provides an outcome-based justification for sex-specific birth weight for gestational age standards but not for the available race-specific standards for blacks and whites in the United States

    Interactome Analyses Identify Ties of PrPC and Its Mammalian Paralogs to Oligomannosidic N-Glycans and Endoplasmic Reticulum-Derived Chaperones

    Get PDF
    The physiological environment which hosts the conformational conversion of the cellular prion protein (PrPC) to disease-associated isoforms has remained enigmatic. A quantitative investigation of the PrPC interactome was conducted in a cell culture model permissive to prion replication. To facilitate recognition of relevant interactors, the study was extended to Doppel (Prnd) and Shadoo (Sprn), two mammalian PrPC paralogs. Interestingly, this work not only established a similar physiological environment for the three prion protein family members in neuroblastoma cells, but also suggested direct interactions amongst them. Furthermore, multiple interactions between PrPC and the neural cell adhesion molecule, the laminin receptor precursor, Na/K ATPases and protein disulfide isomerases (PDI) were confirmed, thereby reconciling previously separate findings. Subsequent validation experiments established that interactions of PrPC with PDIs may extend beyond the endoplasmic reticulum and may play a hitherto unrecognized role in the accumulation of PrPSc. A simple hypothesis is presented which accounts for the majority of interactions observed in uninfected cells and suggests that PrPC organizes its molecular environment on account of its ability to bind to adhesion molecules harboring immunoglobulin-like domains, which in turn recognize oligomannose-bearing membrane proteins

    Dietary Supplementation with Olive Oil or Fish Oil and Vascular Effects of Concentrated Ambient Particulate Matter Exposure in Human Volunteers

    Get PDF
    BackgroundExposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for cardiovascular disease. Olive oil (OO) and fish oil (FO) supplements have beneficial effects on endothelial function.ObjectiveIn this study we evaluated the potential efficacy of OO and FO in mitigating endothelial dysfunction and disruption of hemostasis caused by exposure to particulate matter (PM).Methods and ResultsForty-two participants (58 Β± 1 years of age) received either 3 g/day of OO or FO, or no supplements (naive) for 4 weeks prior to undergoing 2-hr exposures to filtered air and concentrated ambient particulate matter (CAP; mean, 253 Β± 16 ΞΌg/m3). Endothelial function was assessed by flow-mediated dilation (FMD) of the brachial artery preexposure, immediately postexposure, and 20 hr postexposure. Levels of endothelin-1 and markers of fibrinolysis and inflammation were also measured. The FMD was significantly lower after CAP exposure in the naive (–19.4%; 95% CI: –36.4, –2.3 per 100 ΞΌg/m3 CAP relative to baseline; p = 0.03) and FO groups (–13.7%; 95% CI: –24.5, –2.9; p = 0.01), but not in the OO group (–7.6%; 95% CI: –21.5, 6.3; p = 0.27). Tissue plasminogen activator levels were significantly increased immediately after (11.6%; 95% CI: 0.8, 22.2; p = 0.04) and 20 hr after CAP exposure in the OO group. Endothelin-1 levels were significantly increased 20 hr after CAP exposure in the naive group only (17.1%; 95% CI: 2.2, 32.0; p = 0.03).ConclusionsShort-term exposure to CAP induced vascular endothelial dysfunction. OO supplementation attenuated CAP-induced reduction of FMD and changes in blood markers associated with vasoconstriction and fibrinolysis, suggesting that OO supplementation may be an efficacious intervention to protect against vascular effects of exposure to PM.CitationTong H, Rappold AG, Caughey M, Hinderliter AL, Bassett M, Montilla T, Case MW, Berntsen J, Bromberg PA, Cascio WE, Diaz-Sanchez D, Devlin RB, Samet JM. 2015. Dietary supplementation with olive oil or fish oil and vascular effects of concentrated ambient particulate matter exposure in human volunteers. Environ Health Perspect 123:1173–1179; http://dx.doi.org/10.1289/ehp.140898
    • …
    corecore