53 research outputs found

    Adoptive immunotherapy monitored by micro-MRI in experimental colorectal liver metastasis

    Get PDF
    In this study we used the colon carcinoma DHDK12 cell line and generated single metastasis after subcapsular injection in BDIX rats as an experimental tumor model. The aim of the work was to set up in vitro experimental conditions to prepare immune effector cells and in vivo conditions for monitoring the effects of such cells injected as adoptive immunotherapy. Dendritic cells can process tumor cell antigens, induce a T-cell response and be used ex vivo to prepare activated lymphocytes. Lymphocytes were harvested from mesenteric lymph nodes and cocultured with bone marrow-derived autologous dendritic cells previously loaded with irradiated tumor cells. In vitro, the coculture: 1) induced the proliferation of lymphocytes, 2) expanded a preferential subpopulation of T CD8 lymphocytes, and 3) was in favor of lymphocyte cytotoxic activity against the DHDK12 tumor cell line. Activated lymphocytes were injected in the tumor-bearing rat portal vein. Parameters could be set to monitor tumor volume by micro MRI. This monitoring before and after treatment and immunohistochemical examinations revealed that: 1) micro MRI is an appropriate tool to survey metastasis growth in rat, 2) injected lymphocytes increase lesional infiltration with T CD8 cells even 15 days after treatment, 3) a dose of 50 millions lymphocytes is not sufficient to act on the course of the tumor

    Is magnetic resonance imaging texture analysis a useful tool for cell therapy in vivo monitoring?

    Get PDF
    Assessment of anti-tumor treatment efficiency is usually done by measuring tumor size. Treatment may however induce changes in the tumor other than tumor size. Magnetic Resonance Imaging Texture Analysis (MRI-TA) is presently used to follow activated lymphocyte cell therapy. We used a 7T microimager to acquire high-resolution MR images of an experimental liver metastasis from colon carcinoma in rats treated (n = 4) or not (n = 3) with a cell therapy product. MRI-TA was then performed with Linear Discriminant Analysis and showed: i) a significant variation of tumor texture with tumor growth and ii) a significant modification in the texture of tumors treated with activated lymphocytes compared with untreated tumors. T2-weighted images or volume calculation did not evidence any difference. MRI-TA appears as a promising method for early detection and follow-up of response to cell therapy

    Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering

    Get PDF
    Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites

    Biofabrication: an overview of the approaches used for printing of living cells

    Get PDF
    The development of cell printing is vital for establishing biofabrication approaches as clinically relevant tools. Achieving this requires bio-inks which must not only be easily printable, but also allow controllable and reproducible printing of cells. This review outlines the general principles and current progress and compares the advantages and challenges for the most widely used biofabrication techniques for printing cells: extrusion, laser, microvalve, inkjet and tissue fragment printing. It is expected that significant advances in cell printing will result from synergistic combinations of these techniques and lead to optimised resolution, throughput and the overall complexity of printed constructs

    Ophthalmic gels : past, present and future

    Get PDF

    Immunity of human epithelial ovarian carcinoma: the paradigm of immune suppression in cancer

    Get PDF
    corecore