163 research outputs found

    A database of aircraft measurements of carbon monoxide (CO) with high temporal and spatial resolution during 2011–2021

    Get PDF
    To understand tropospheric air pollution at regional and global scales, the SPIRIT (SPectromètre Infra-Rouge In situ Toute altitude) airborne instrument was developed and used on aircraft to measure volume mixing ratios of carbon monoxide (CO), an important indicator of air pollution, during the last decade. SPIRIT provides high-quality CO measurements with 1σ precision of 0.3 ppbv at a time resolution of 1.6 s thanks to the coupling of a quantum cascade laser to a Robert optical multi-pass cell. It can be operated on different aircraft such as Falcon-20 and ATR-42 from the German Aerospace Agency (DLR) and from SAFIRE (CNRS-CNES-Météo France). With support from various projects, measurements were taken for more than 200 flight hours over three continents (Europe, Asia, and Africa), including two intercontinental transects (Europe–Asia and Europe–Africa). Levels of CO and its spatial distribution are briefly discussed and compared between different regions/continents. CO generally decreases with altitude except in some cases, indicating the important contribution of long-distance transport to CO levels. A 3D trajectory mapped by CO level was plotted for each flight and is presented in this study (which includes a Supplement). The database is archived in the AERIS database (https://doi.org/10.25326/440), the French national center for atmospheric observations (Catoire et al., 2023). In addition, it could help to validate model performance and satellite measurements. For instance, the database covers measurements at high-latitude regions (i.e., Kiruna, Sweden, 68∘ N), where satellite measurements are still challenging, and at low-latitude regions (West Africa and Southeast Asia), where in situ data are scarce and satellites need more validation by airborne measurements.</p

    Reformulation of the strong-field approximation for light-matter interactions

    Get PDF
    We consider the interaction of hydrogen-like atoms with a strong laser field and show that the strong field approximation and all its variants may be grouped into a set of families of approximation schemes. This is done by introducing an ansatz describing the electron wave packet as the sum of the initial state wave function times a phase factor and a function which is the perturbative solution in the Coulomb potential of an inhomogeneous time-dependent Schr\"odinger equation. It is the phase factor that characterizes a given family. In each of these families, the velocity and length gauge version of the approximation scheme lead to the same results at each order in the Coulomb potential. By contrast, irrespective of the gauge, approximation schemes belonging to different families give different results. Furthermore, this new formulation of the strong field approximations allows us to gain deeper insight into the validity of the strong field approximation schemes. In particular, we address two important questions: the role of the Coulomb potential in the output channel and the convergence of the perturbative series in the Coulomb potential. In all the physical situations we consider here, our results are compared to those obtained by solving numerically the time-dependent Schr\"odinger equation.Comment: 19 pages, 9 figures, submitted for publicatio

    Bounds on the growth of high Sobolev norms of solutions to 2D Hartree Equations

    Full text link
    In this paper, we consider Hartree-type equations on the two-dimensional torus and on the plane. We prove polynomial bounds on the growth of high Sobolev norms of solutions to these equations. The proofs of our results are based on the adaptation to two dimensions of the techniques we previously used to study analogous problems on S1S^1, and on R\mathbb{R}.Comment: 38 page

    Modelling the chemistry and transport of bromoform within a sea breeze driven convective system during the SHIVA Campaign

    Get PDF
    We carry out a case study of the transport and chemistry of bromoform and its product gases (PGs) in a sea breeze driven convective episode on 19 November 2011 along the North West coast of Borneo during the "Stratospheric ozone: Halogen Impacts in a Varying Atmosphere" (SHIVA) campaign. We use ground based, ship, aircraft and balloon sonde observations made during the campaign, and a 3-D regional online transport and chemistry model capable of resolving clouds and convection explicitly that includes detailed bromine chemistry. The model simulates the temperature, wind speed, wind direction fairly well for the most part, and adequately captures the convection location, timing, and intensity. The simulated transport of bromoform from the boundary layer up to 12 km compares well to aircraft observations to support our conclusions. The model makes several predictions regarding bromine transport from the boundary layer to the level of convective detrainment (11 to 12 km). First, the majority of bromine undergoes this transport as bromoform. Second, insoluble organic bromine carbonyl species are transported to between 11 and 12 km, but only form a small proportion of the transported bromine. Third, soluble bromine species, which include bromine organic peroxides, hydrobromic acid (HBr), and hypobromous acid (HOBr), are washed out efficiently within the core of the convective column. Fourth, insoluble inorganic bromine species (principally Br2) are not washed out of the convective column, but are also not transported to the altitude of detrainment in large quantities. We expect that Br2 will make a larger relative contribution to the total vertical transport of bromine atoms in scenarios with higher CHBr3 mixing ratios in the boundary layer, which have been observed in other regions. Finally, given the highly detailed description of the chemistry, transport and washout of bromine compounds within our simulations, we make a series of recommendations about the physical and chemical processes that should be represented in 3-D chemical transport models (CTMs) and chemistry climate models (CCMs), which are the primary theoretical means of estimating the contribution made by CHBr3 and other very short-lived substances (VSLS) to the stratospheric bromine budget

    Mutant TDP-43 and FUS Cause Age-Dependent Paralysis and Neurodegeneration in C. elegans

    Get PDF
    Mutations in the DNA/RNA binding proteins TDP-43 and FUS are associated with Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Intracellular accumulations of wild type TDP-43 and FUS are observed in a growing number of late-onset diseases suggesting that TDP-43 and FUS proteinopathies may contribute to multiple neurodegenerative diseases. To better understand the mechanisms of TDP-43 and FUS toxicity we have created transgenic Caenorhabditis elegans strains that express full-length, untagged human TDP-43 and FUS in the worm's GABAergic motor neurons. Transgenic worms expressing mutant TDP-43 and FUS display adult-onset, age-dependent loss of motility, progressive paralysis and neuronal degeneration that is distinct from wild type alleles. Additionally, mutant TDP-43 and FUS proteins are highly insoluble while wild type proteins remain soluble suggesting that protein misfolding may contribute to toxicity. Populations of mutant TDP-43 and FUS transgenics grown on solid media become paralyzed over 7 to 12 days. We have developed a liquid culture assay where the paralysis phenotype evolves over several hours. We introduce C. elegans transgenics for mutant TDP-43 and FUS motor neuron toxicity that may be used for rapid genetic and pharmacological suppressor screening

    Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)

    Get PDF
    This paper presents extensive bias determination analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45 60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about + 20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within +/- 10% (average values within +/- 6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (similar to 35-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to -10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45-55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements
    • …
    corecore