42 research outputs found

    Depressions at the surface of an elastic spherical shell submitted to external pressure

    Full text link
    Elasticity theory calculations predict the number N of depressions that appear at the surface of a spherical thin shell submitted to an external isotropic pressure. In a model that mainly considers curvature deformations, we show that N only depends on the relative volume variation. Equilibrium configurations show single depression (N=1) for small volume variations, then N increases up to 6, before decreasing more abruptly due to steric constraints, down to N=1 again for maximal volume variations. These predictions are consistent with previously published experimental observations

    Numerical deflation of beach balls with various Poisson's ratios: from sphere to bowl's shape

    Full text link
    We present a numerical study of the shape taken by a spherical elastic surface when the volume it encloses is decreased. For the range of 2D parameters where such surface may modelize a thin shell of an isotropic elastic material, the mode of deformation that develops a single depression is investigated in detail. It first occurs via buckling from sphere toward an axisymmetric dimple, followed by a second buckling where the depression loses its axisymmetry, by folding along portions of meridians. We could exhibit unifying master curves for the relative volume variation at which first and second buckling occur, and clarify the role of the Poisson's ratio. After the second buckling, the number of folds and inner pressure are investigated, allowing to infer shell features from mere observation and/or knowledge of external constraints

    Two-dimensional flows of foam: drag exerted on circular obstacles and dissipation

    Full text link
    A Stokes experiment for foams is proposed. It consists in a two-dimensional flow of a foam, confined between a water subphase and a top plate, around a fixed circular obstacle. We present systematic measurements of the drag exerted by the flowing foam on the obstacle, \emph{versus} various separately controlled parameters: flow rate, bubble volume, solution viscosity, obstacle size and boundary conditions. We separate the drag into two contributions, an elastic one (yield drag) at vanishing flow rate, and a fluid one (viscous coefficient) increasing with flow rate. We quantify the influence of each control parameter on the drag. The results exhibit in particular a power-law dependence of the drag as a function of the solution viscosity and the flow rate with two different exponents. Moreover, we show that the drag decreases with bubble size, increases with obstacle size, and that the effect of boundary conditions is small. Measurements of the streamwise pressure gradient, associated to the dissipation along the flow of foam, are also presented: they show no dependence on the presence of an obstacle, and pressure gradient depends on flow rate, bubble volume and solution viscosity with three independent power laws.Comment: 23 pages, 13 figures, proceeding of Eufoam 2004 conferenc

    Let’s deflate that beach ball

    Get PDF
    International audienceWe investigate the relationship between pre-buckling and post-buckling states as a function of shell properties, within the deflation process of shells of an isotropic material. With an original and low-cost setup that allows to measure simultaneously volume and pressure, elastic shells whose relative thicknesses span on a broad range are deflated until they buckle. We characterize the post-buckling state in the pressure-volume diagram, but also the relaxation toward this state. The main result is that before as well as after the buckling, the shells behave in a way compatible with predictions generated through thin shell assumption, and that this consistency persists for shells where the thickness reaches up to 0.3 the shell's midsurface radius

    Collective orientation of an immobile fish school, effect on rheotaxis

    Full text link
    We study the orientational order of an immobile fish school. Starting from the second Newton's law, we show that the inertial dynamics of orientations is ruled by an Ornstein-Uhlenbeck process. This process describes the dynamics of alignment between neighboring fish in a shoal, a dynamics already used in the literature for mobile fish schools. Firstly, in a fluid at rest, we calculate the global polarization (i.e. the mean orientation of the fish) which decreases rapidly as a function of the noise. We show that the faster a fish is able to reorient itself, the more the school can afford to reorder itself for important noise values. Secondly, in the prescence of a stream, each fish tends to orient itself and swims against the flow: the so-called rheotaxis. So even in the presence of a flow, it results in an immobile fish school. By adding an individual rheotaxis effect to alignment interaction between fish, we show that in a noisy environment, individual rheotaxis is enhanced by alignment interactions between fish.Comment: 11 pages, 9 figure

    Physique des mouvements rapides chez les plantes

    Get PDF
    National audienceDépourvues de muscles, certaines plantes mettent en œuvre des mouvements dont la fulgurance est comparable à celle des animaux. Nous montrons dans cet article que beaucoup de ces mouvements, nécessités par la reproduction ou la nutrition, ont la même base physique : une instabilité mécanique qui libère de l’énergie élastique stockée. Deux grands types d’instabilités mécaniques sont utilisés par les plantes pour amplifier la vitesse de leur mouvement : les ruptures solides ou liquides (cavitation) pour la propulsion des graines ou des spores de fougères, et les instabilités de flambage élastique pour les pièges des plantes carnivores, telles que la Dionée ou l’utriculaire

    Gel-phase vesicles buckle into specific shapes

    Get PDF
    International audienceOsmotic deflation of giant vesicles in the rippled gel-phase Pβ′P_{\beta '} gives rise to a large variety of novel faceted shapes. These shapes are also found from a numerical approach by using an elastic surface model. A shape diagram is proposed based on the model that accounts for the vesicle size and ratios of three mechanical constants: in-plane shear elasticity and compressibility (usually neglected) and out-of-plane bending of the membrane. The comparison between experimental and simulated vesicle morphologies reveals that they are governed by a typical elasticity length, of the order of one micron, and must be described with a large Poisson's ratio

    Etude en rayons X cohérents de la dynamique de suspensions concentrées de sphères dures

    Get PDF
    Les suspensions colloïdales de particules sphériques présentant des interactions de type sphères dures font partie des systèmes les plus simples et les plus largement étudiés en Matière Molle. Elles peuvent être considérées comme systèmes modèles pour tester des théories plus générales, par exemple en ce qui concerne la cristallisation [1] ou la transition vitreuse [2]. Malgré de nombreux résultats théoriques et expérientaux dans ce domaine, le comportement dynamique des suspensions de sphères dures n'a pas été complètement élucidé.La spectroscopie à corrélation de photons X (XPCS) est une technique de diffusion cohérente équivalente à la Diffusion Quasi-Elastique de la Lumière [3], qui est un des principaux outils d'investigation de la dynamique colloïdale [4]. Comparée à la luière visible, l'utilisation de rayons X procure des rensignements sur les transferts de moment de plus haute énergie, et évite les diffusions multiples - phénomène qui complique sensiblement les études en DQEL pour les échantillons concentrés. De plus, l'utilisation du détecteur 2D compteur de photons (MAXIPIX) disponible sur la ligne ID10 (ESRF) donne des renseignements sur l'évolution de la dynamique de l'échantillon au cours de l'exposition, via les fonctions de corrélation à deux temps.Dans ce travail, nous avons étudié une suspension de spheres colloïdales de PMMA (poly(méthylmétacrylate)) stériquement stabilisées. La distribution en taille des particules et leur concentration ont été obtenues par diffusion de rayons X aux petits angles (SAXS). Les expériences de XPCS effectuées aux plus grandes fractions volumiques en particules (>0.5) mettent en évidence à la fois des temps de diffusion courts et des temps longs autour des pics de Bragg. Une comparaison avec une précédente étude [5] montre, pour une petite gamme de fractions volumiques, une modification drastique de la loi d'échelle entre les temps de relaxation courts et les temps longs qui avait été initialement proposée par Segrè et Pusey [6]. L'analyse des fonctions de corrélation à deux temps révèle un comportement dynamique complexe des échantillons légèrement au-dessus de la transition vitreuse, alors qu'on n'observe aucun signe de modifications structurales via diffusion statique. Utiliser la XPCS sur des suspensions en écoulement dans des canaux cylindriques avait fait ses preuves pour renseigner à la fois sur les propriétés dynamiques et d'écoulement de suspensions diluées [7]. Ici, nous discutons les potentialités et les limites de cette méthode, en étudiant l'interaction entre les propriétés rhéologiques et dynamiques dans ces systèmes complexes modèles que sont les verres colloïdaux.[1] P. N. Pusey and W. van Megen. In: Nature 320.6060 (Mar. 1986), pp. 340 342 [2] P. N. Pusey and W. van Megen. In: Phys. Rev. Lett. 59 (18 1987), pp. 2083 2086.[3] V. A. Martinez et al. In: The Journal of Chemical Physics 134.5, 054505 (2011), p. 054505.[4] B. J. Berne and R. Pecora. Dynamic Light Scattering with application to chemistry, biology and physics. Dover Publications, New York, 2000. [5] D. Orsi et al. Dynamics in dense hard-sphere colloidal suspensions . In: Phys. Rev. E 85 (1 2012), p. 011402. doi: 10.1103/PhysRevE.85.011402. url: http://link.aps.org/doi/1 0.1103/PhysRevE.85.011402. [6] P. N. Segrè and P. N. Pusey. In: Phys. Rev. Lett. 77.4 (1996), pp. 771 774.[7] A. Fluerasu et al. In: New Journal of Physics 12.3 (2010)Colloidal suspensions of spherical particles presenting hard-sphere like interactions is one of the simplest and most widely studied systems of soft condensed matter. They can be treated as a model for testing fundamental theories, regarding e.g. crystallization [1] or glass transition [2]. Despite the long history of both theoretical and experimental research, the dynamic behavior of hard sphere suspensions still lacks a complete understanding.X-ray Photon Correlation Spectroscopy (XPCS) is a coherent scattering technique equivalent to Dynamic Light Scattering (DLS) [3], which is one of the main tools used in the study of colloidal dynamics [4]. Comparing to visible light, the use of X-rays provides access to higher momentum transfer vector values and allows to avoid multiple scattering a phenomena significantly complicating DLS measurements on concentrated samples. Moreover, the use of a fast, single photon counting area detector (MAXIPIX) available at the ID10 beamline at ESRF gives insight into the evolution of sample dynamics during the measurement time by the means of two-time correlation functions.In this work suspensions of sterically stabilized poly(methyl methacrylate) (PMMA) colloidal spheres were used. Particle size, polydispersity and volume fractions of the samples were obtained using the Small-Angle X-ray Scattering (SAXS) technique. XPCS measurements at high volume fractions (>0.5) show both short- and long-time diffusive behaviour for scattering vector values around, but not restricted to the structure factor peak position. A comparison with an earlier study [5] shows a dramatic change in the approximate scaling between the short- and long-time relaxation rates, initially proposed by Segrè and Pusey in [6], over a small range of volume fractions. The analysis of two-time correlation functions reveals complex dynamic behaviour of a sample slightly above the glass transition, while no signs of structural changes are observed in the static scattering patterns. The studies indicate the dynamics being governed by a jamming transition driven by restrictions in free volume rather than a glass transition as know from the mode-coupling theory. A combination of XPCS with flow in a cylindrical channel has demonstrated previously to give both dynamic and flow properties of dilute suspensions [7]. Here we discuss the potential and limitations of this method in the study of the interplay between rheological properties and dynamics in complex systems such as colloidal glasses. [1] P. N. Pusey and W. van Megen. In: Nature 320.6060 (Mar. 1986), pp. 340 342[2] P. N. Pusey and W. van Megen. In: Phys. Rev. Lett. 59 (18 1987), pp. 2083 2086.[3] V. A. Martinez et al. In: The Journal of Chemical Physics 134.5, 054505 (2011), p. 054505.[4] B. J. Berne and R. Pecora. Dynamic Light Scattering with application to chemistry, biology and physics. Dover Publications, New York, 2000.[5] D. Orsi et al. Dynamics in dense hard-sphere colloidal suspensions . In: Phys. Rev. E 85 (2012), p. 011402.[6] P. N. Segrè and P. N. Pusey. In: Phys. Rev. Lett. 77.4 (1996), pp. 771 774.[7] A. Fluerasu et al. In: New Journal of Physics 12.3 (2010)SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Statistical mechanics of two-dimensional shuffled foams: Geometry-topology correlation in small or large disorder limits

    Get PDF
    Bubble monolayers are model systems for experiments and simulations of two-dimensional packing problems of deformable objects. We explore the relation between the distributions of the number of bubble sides (topology) and the bubble areas (geometry) in the low liquid fraction limit. We use a statistical model [M. Durand, Europhys. Lett. 90, 60002 (2010)] which takes into account Plateau laws. We predict the correlation between geometrical disorder (bubble size dispersity) and topological disorder (width of bubble side number distribution) over an extended range of bubble size dispersities. Extensive data sets arising from shuffled foam experiments, surface evolver simulations, and cellular Potts model simulations all collapse surprisingly well and coincide with the model predictions, even at extremely high size dispersity. At moderate size dispersity, we recover our earlier approximate predictions [M. Durand, J. Kafer, C. Quilliet, S. Cox, S. A. Talebi, and F. Graner, Phys. Rev. Lett. 107, 168304 (2011)]. At extremely low dispersity, when approaching the perfectly regular honeycomb pattern, we study how both geometrical and topological disorders vanish. We identify a crystallization mechanism and explore it quantitatively in the case of bidisperse foams. Due to the deformability of the bubbles, foams can crystallize over a larger range of size dispersities than hard disks. The model predicts that the crystallization transition occurs when the ratio of largest to smallest bubble radii is 1.4
    corecore