A Stokes experiment for foams is proposed. It consists in a two-dimensional
flow of a foam, confined between a water subphase and a top plate, around a
fixed circular obstacle. We present systematic measurements of the drag exerted
by the flowing foam on the obstacle, \emph{versus} various separately
controlled parameters: flow rate, bubble volume, solution viscosity, obstacle
size and boundary conditions. We separate the drag into two contributions, an
elastic one (yield drag) at vanishing flow rate, and a fluid one (viscous
coefficient) increasing with flow rate. We quantify the influence of each
control parameter on the drag. The results exhibit in particular a power-law
dependence of the drag as a function of the solution viscosity and the flow
rate with two different exponents. Moreover, we show that the drag decreases
with bubble size, increases with obstacle size, and that the effect of boundary
conditions is small. Measurements of the streamwise pressure gradient,
associated to the dissipation along the flow of foam, are also presented: they
show no dependence on the presence of an obstacle, and pressure gradient
depends on flow rate, bubble volume and solution viscosity with three
independent power laws.Comment: 23 pages, 13 figures, proceeding of Eufoam 2004 conferenc