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Abstract. We investigate the relationship between pre-buckling and post-buckling states as a function
of shell properties, within the deflation process of shells of an isotropic material. With an original and
low-cost set-up that allows to measure simultaneously volume and pressure, elastic shells whose relative
thicknesses span on a broad range are deflated until they buckle. We characterize the post-buckling state
in the pressure-volume diagram, but also the relaxation toward this state. The main result is that before
as well as after the buckling, the shells behave in a way compatible with predictions generated through
thin shell assumption, and that this consistency persists for shells where the thickness reaches up to 0.3
the shell’s midsurface radius.

PACS. XX.XX.XX No PACS code given

1 Introduction

Due to the boom of microfluidics and miniaturization,
small spherical objects are increasingly studied in soft
matter, many of them thin and prone to deformation. De-
formation is usually accompanied by deflation (e.g. due to
osmotic pressure, or leakage, or lateral expansion of the
shell). There have been several theoretical or numerical
studies [1–9] and some experimental investigations [10–
12] about the deflation of a thin, elastic, shell. Most of
them focus essentially on understanding and quantifying
the scenario of the buckling instability that occurs be-
yond a certain threshold of compression or deflation. Less
is known about the post-buckling behaviour [3–5,7,13], let
alone when thin shell theory is a priori not valid. It is gen-
erally assumed that a 2D description of the shell is valid
when d/R < 0.02, where d is the shell thickness and R its
mid-surface radius (R− d

2 and R+ d
2 are then respectively

the internal and external radii). In that case the 2D prop-
erties of the surface model can be interpreted in terms
of shell thickness and 3D properties of the constituting
material. These models indeed constitute a simplification
compared to studies managing 3D features [14,5].

In this paper, we investigate experimentally the defla-
tion of elastic macroscopic shells, down to buckling and
post-buckling deformations, for a broad range of relative
shell thicknesses. These results are compared to what is
known from thin shell theory, which allows to discuss its
validity range.

Our low-cost experimental set-up was conceived as an
efficient and versatile tool for exploring with students in-
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Fig. 1. Buckled shell through volume loss: an axisymmetric
depression (shown by arrow) suddenly appears when internal
volume is slowly decreased. External radius R+d/2 = 171 mm;
relative thickness d/R = 6.5 10−3.

stability issues and bifurcations diagrams under several
conditions (volume or pressure imposed), and for char-
acterizing shells before using them in a more complex
environment [15]. Yet, it provides for the first time an
experimental characterization of the relationship between
pre-buckling and post-buckling states. Transition between
these two states is accompanied by a fast release of energy,
a feature present in Nature [16–18] that has already been
used in several applications with similar soft systems [15,
19–23].
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Fig. 2. Elastic shells almost fully deflated; the hemisphere
that is curved inward is in contact with the, mainly un-
changed, other half of the shell. (a) Thick shell (relative thick-
ness d/R = 0.18; external radius R+d/2 = 55.5 mm), in which
axisymmetry was conserved throughout the deflation. (b) Thin
shell (d/R = 10.6 10−3; external radius R + d/2 = 190 mm),
where radial folds began to develop inside the depression at
some point of the deflation process.

Spherical shells of an isotropic elastic material are ex-
pected to undergo sequences of shapes that depend only on
intensive parameters: Poisson’s ratio ν and relative thick-
ness d/R. Shells should first stay spherical while their ra-
dius decreases, up to the point where a buckling instabil-
ity suddenly makes a circular depression appear, of char-
acteristic dimension

√
dR (Fig. 1) [2,24]. This step was

only recently understood in terms of mode localization [8,
25]. According to simulations and theoretical studies, the
depression then grows axisymmetrically when the shell is
slowly deflated [3–5,8]. Thicker shells keep axisymmetry
up to self-contact (Fig. 2-a), while for thinner shells, the
depression looses its axisymmetry during deflation, pro-
gressively developing radial folds (Fig. 2-b) [3,4,7,8,13].

Quantitatively, the deflation is characterized by the
volume change ∆V from the initial nondeflated state, and
the pressure drop ∆P = Pext−Pint > 0 it induces between
both sides of the shell (outside and inside the ball). In a
surface model, the denominator of the dimensionless rel-
ative volume variation ∆V

V0
is the volume enclosed by the

initial undeformed surface. For this experimental study we
chose to take as a reference the volume V0 = 4

3πR
3 initially

enclosed by the midsurface of the shell, instead of the vol-

ume Vint = 4
3π
(
R− d

2

)3
effectively contained in the shell,

thus allowing direct comparison with surface models. The
set-up we developed provides the pressure drop and the
volume variation of deflated spheres of known initial vol-
ume ; we could then follow and discuss deformation paths
observed in a ∆P − ∆V

V0
diagram. We denote by ℘(∆VV0

)
the state equation between both quantities at equilibrium.
This function ℘ is to be determined in this paper.

2 Set-up for deflation experiments

We considered about 25 commercial hollow balls (beach
balls, squash balls, juggle balls, balls for rhythmic gym-
nastics...) made of elastomers, of external radii R + d/2
ranging between 39.5 and 190 mm, and d/R ratios be-
tween 6.5 10−3 and 0.25, plus a homemade ball of relative

thickness 0.22 [15]. All Young moduli Y3D measured for
small strains are between 0.5 and 7.5 MPa (see section 4).

In order to easily measure volumes and pressures, the
ball is filled with an incompressible fluid (water). It is then
also immersed in water so as to avoid gradients of hydro-
static pressure along the ball (which amounts to study
shapes not deformed by gravity). The ball is connected to
a U-shape manometer, a syringe, and a third tube con-
nected to the tank of water so as to favor initial quick
equilibration of all pressures (Fig. 3-a). In the initial state,
the pressure difference ∆P is 0. Taps allow us to connect
the ball either to the syringe or to the manometer. The
manometer is made of a cylindrical tube of diameter rang-
ing between 0.79 and 3.18 mm and thick enough to avoid
tube buckling under the highest pressure differences 1 bar,
which are met with thick squash balls. If required, the to-
tal height of the manometer could reach 10 m so as to
measure such depressions.

The experiment is run as follows: an increasing amount
of liquid ∆Vw is withdrawn from the ball through valve Vs
(Fig. 3-b), via small volume intakes δVi (∆Vw =

∑
δVi).

After each step the ball is put in contact with the sole
manometer through valve Vm. The displacement h > 0 of
the liquid in the manometer from the initial equilibrium
situation yields the pressure difference Pext − Pint = ρgh
across the ball membrane, where ρ is the density of water.
Because of the fluid volume variations in the manometer,
the inner volume variation ∆V of the shell is slightly dif-
ferent from the volume ∆Vw set through the syringe :

∆V = ∆Vw − πr2h, (1)

where r is the internal radius of the (cylindrical) manome-
ter tube. Even though this correction is systematically
taken into account, the problem with large sections S =
πr2 would be that the volume withdrawn in the syringe
has to be much larger than the targeted ∆V , which may
possibly make the system jump to another stability branch.
This could impede full characterization of the branch of
interest ; this is discussed in detail in subsection 3.2.2. On
the other hand, the limitation when decreasing S lies in
a possibly high equilibration time (see subsection 3.2.1).
These experimental precautions being taken into account,
for each ball the pressure difference ∆P at mechanical
equilibrium can be plotted with respect to the relative
volume variation ∆V

V0
, giving insights on the state equa-

tion ℘(∆VV0
) that is expected to depend on the relative

thickness d/R of the ball, and on its material’s properties
(Y3D, ν).

The two-step procedure ensures to work at almost im-
posed volume and to discuss the time evolution of the
system from a known state. Had the valves Vs and Vm
always been kept open so as to measure simultaneously
volumes and pressures, the interpretation of the dynamics
towards equilibrium would have been more tricky, since
sucking out fluids in the manometer amounts to imposing
pressure in the shell once the withdrawal step is stopped.
The relative contribution of the volume withdrawal in the
shell and in the manometer would depend on the whole
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Initial state Volume removal Pressure measurement

(c)(b)(a)

Fig. 3. Principle of the experiment: an elastomer ball is plunged in a tank of water. The ball is filled with the same liquid,
which avoids extra deformations due to internal-external differences of hydrostatic pressure. Its inner volume is linked either to
a manometer (U tube on the right) through valve Vm, or, through valve Vs, to a syringe that modifies the volume whatever the
pressure, or to the water tank through valves Vs and Vr. (a) Initial state: pressures in the ball, in the manometer and in the
water tank are equilibrated (Vm, Vs and Vr open). The initial volume enclosed by its midsurface is V0 = 4

3
πR3 (reference for

subsequent calculation of the relative volume variation). At rest, the level in the manometer (which is a tiny tube) overtakes
that in the tank by about a few millimeters, due to capillary effects. This level at rest is taken as the reference for pressure
calculations. (b) Deflation: through open Vs, the syringe removes a controlled volume of water δVi (this volume can safely
be considered as incompressible even if inner pressure drastically drops). (c) After the closing of Vs, the opening of Vm, and
equilibration, the pressure difference between both sides of the ball wall is calculated from the slump h > 0 of water level in
the manometer: ∆P = ρgh. The inner volume change due to the level adjustment in the manometer is not negligible and is
taken into account in further calculations. Practically, deflation is done stepwise, through repetition of stages (b) and (c), this
latter providing a series of equilibrium states corresponding to inner volume variations (∆V1, ..., ∆Vi,∆Vi+1, ...). When full, the
syringe can be emptied through valve Vr without opening the system.

set-up configuration, and in particular on the tubings re-
sistance, as well as on the shell mechanical properties.

3 Deflation of spherical shells

Deflation essentially occurs within two regimes. In a first
mode of deformation, the ball roughly keeps its sphericity.
Then a sudden transition [2,5,7,8,14,25] transforms the
sphere into an axisymmetric shape with a dimple (Fig.
1). Further deflation makes the dimple size continuously
increase (Fig. 2-a) [5,7,8]. Note that quick deflation can
lead to multi-dimple deformations, which were shown to
correspond to branches of higher energy [26], but this was
not observed thanks to our small-stepped-deflation.

3.1 Linear regime before buckling

The first regime corresponds to constraints with a spher-
ical symmetry, which results in a “in-plane” compression
of the shell (i.e. parallel to the free surfaces). For materi-
als with nonzero Poisson’s ratio, this induces elongation-
nal shear in the thickness of the shell but, in the surface
model that is used to describe thin shells, spherical shrink-
ing can be modelled by a uniform in-plane compression

of a spherical surface [7]. In a ∆P versus ∆V
V0

diagram,
quadratic compression energy corresponds to a linear evo-

lution [7,27]: ∆P = 4χ2D

3R

(
∆V
V0

)
, where χ2D is the surface

compression modulus. For a thin shell of an isotropic ma-
terial, this 2D effective parameter can be linked to the 3D
properties of the shell through χ2D = Y3Dd

2(1−ν) , where Y3D
is the Young modulus of the material, and ν its Poisson’s
ratio (ν . 0.5 for most of the elastomeric materials, these
latter being exclusively used for our experiments because
they can undergo a 200% elongation without plastic de-
formation or fracturation). Hence:

∆P =
2Y3D

3 (1− ν)
× d

R

(
∆V

V0

)
. (2)

Experiments effectively show the expected linear be-
haviour, as exemplified in Fig. 4. Values of the slope are
used to nondimensionalise the characteristic post-buckling
pressures in subsection 3.2.4, and are compared in sec-
tion 4 to traction experiments which provided indepen-
dent measurements of Y3D and ν.

This linear regime persists up to the point where an
instability causes a drastic change of shape (”buckling”)
toward a configuration with a single axisymmetric dimple,
together with a drop of ∆P . The critical pressure at which
buckling takes place was predicted from classical buckling



4 Gwennou Coupier et al.: Let’s deflate that beach ball

(a)

(b)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

5000

10000

15000

20000

25000

30000

0

0.000 0.005 0.010 0.015 0.020 0.025

200

400

600

800

1000

1200

1400

0

Fig. 4. Outside-inside pressure difference ∆P = Pext−Pint for
different elastic shells, versus the relative volume variation. All
measurements done at equilibrium for different water volume
removals are represented. Green line: linear fit before buckling.
(a) R = 22.5 mm, d/R = 0.222, Y3D = 0.5 MPa (measured
by traction experiments, see subsection 4). (b) R = 51.2 mm,
d/R = 0.0293, Y3D = 5.5 MPa. Buckling can be observed here
for ∆V

V0
? 0.01, and plateauing (see subsection 3.2) for ∆V

V0

over about 0.015.

theory [1,5] to be:

∆Pc =
2√

3 (1− ν2)
× Y3D

(
d

R

)2

. (3)

In experiments, buckling often occurs before this thresh-
old is reached, because of defects in the material [28,29],
possibly down to 20% of the theoretical predictions for a
perfect shell [25].

According to numerical studies [5,7,27], proceeding
with small deflation steps after this buckling hardly changes
the value of ∆P , which roughly plateaus during a sub-
stantial range of ∆V

V0
. Plateauing, which is exemplified in

Fig. 4-b is specifically studied in the next section. For the
thinnest shells, further deflation steps lead to a second,
softer transition where radial folds progressively appear
in the dimple (see Fig. 2-b and refs. [3,4,7]) ; this aspect
is not addressed in the present paper.

3.2 Post-buckling plateau

3.2.1 Stabilization time

During the spherical mode of deflation, the water level
continuously falls (stabilizing within a few seconds) every
time a small amount of water is sucked out from the ball.
After buckling, it suddenly rises in the manometer. When
deflation is performed further on, several behaviours may
take place:

(a)

(b)
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Fig. 5. ”Slow devices”: Time evolution of the slump h of water
level in the manometer. (a) Monoexponential relaxation with a
characteristic time τ = 129 s for a ball of radius R = 22.5 mm
and relative thickness d/R = 0.222; relative volume varia-
tion after stabilization (i.e. calculated using hasympt in Eq.

(1))
∆Vasympt

V0
= 0.211. (b) Biexponential relaxation for dif-

ferent values of the volume sucked out from a ball of radius
R = 58.7 mm and d/R = 0.097, during 2 different sequences
of deflation. All theoretical curves correspond to a biexponen-
tial fit with the same pair of characteristic times (τ1 = 440 s,
τ2 = 15000 s) and the same proportion p = 0.42 of short-time
exponential.

- For most ball+manometer devices, the water level
in the manometer stabilizes within a few seconds at each
post-buckling deflation step. When recorded for a large
range of relative volume variations, the slump h under
the reference equilibrium level in the manometer hardly
varies with ∆V

V0
(”plateauing”). It shows indeed a very

weak minimum at some intermediate value (as exampli-
fied in fig. 4-b for ∆V

V0
above 0.015). Then, for the experi-

ments carried at sufficiently large deflation, it re-increases
which corresponds to an expected divergence when ∆V

V0
ap-

proaches 1 (ideally emptied ball)[5]. The minimum value
hmin of h when it plateaus allows to determine the so-
called ”plateauing pressure” ∆Ppl = ρghmin. This quan-
tity underwent a specific study in the numerical simula-
tions of ref. [7], which will be revisited hereafter.

- Nevertheless, for some ball+manometer devices, at
all deflation steps h systematically shows a steep increase
(i.e. the water level is suddenly sucked down for a few sec-
onds) every time the ball is reconnected to the manometer
after the sucking out of δVi; then it decreases during min-
utes or more before stabilization, down to a new equilib-
rium value hasympt. In the following, these experimental
configurations are named ”slow devices”. For most shells
where post-buckling equilibrium is not immediately real-
ized, it would have been too long to wait for h reaching
the hasympt value for each relative volume variation ∆V

V0
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Fig. 6. Continuous black lines: typical state function (see [5,
7]), that can locally be denotated as ℘(∆V ). Upper branch:
after removal of a volume of water δVi (with the syringe
through valve Vs) from the equilibrium state Ai (∆Vi,∆Pi),
the shell finds a non-observable intermediate equilibrium state
Ai+1,interm (∆Vi + δVi,∆Pi+1,interm). Opening valve Vm for
the measurement of the inner pressure leads to a new (observ-
able) equilibrium state Ai+1 (∆Vi+1,∆Pi+1), in orange, at the
intersection of ℘(∆V ) and the straight line of slope

(
− ρg
πr2

)
(cf Eq. (5)) that passes through the point (∆Vi + δVi,∆Pi)).
Since d℘

d(∆V )
> 0, one gets ∆Vi+1 < ∆Vi + δVi. Lower branch:

same construction (with primed symbols) for intermediate and
final state (in blue). As d℘

d(∆V )
< 0 there, the inequality reverts:

∆Vi+1 > ∆Vi+ δVi. This construction shows that on the lower
stability branch, states corresponding to a ∆P higher than in
state C, where the slope equals to

(
− ρg
πr2

)
, cannot be explored.

explored. Fortunately, we found out that the decrease of
h(t) was exponential for a few cases (fig. 5-a), and that in
the other cases it could be fitted using a biexponential of
general formula:

h (t) = hasympt+(hinit − hasympt)
[
p e−t/τ1 + (1− p) e−t/τ2

]
,

(4)
where τ1 and τ2 are respectively the short and long

characteristic times, and p the proportion of short-time
exponential in the modelled signal (see Fig. 5-b).

Mechanical equilibrium is realized only when the wa-
ter level in the manometer reaches its asymptotic value

hasympt. The
(
∆V
V0
, ∆P = ρghasympt

)
experimental graph

shows plateauing as for balls without time delay. Results
are presented and discussed in subsection 3.2.4.

3.2.2 Equilibrium and manometer

The equilibrium configurations, and the route toward them,
are obtained while the shell is in contact with the manome-
ter. In the two following subsections, we establish how this
coupling influences the way the state diagram is explored

and how the dynamical features intrinsic to the shell can
be extracted.

After closing of valve Vs and opening of valve Vm
(see Fig. 3), pressure adaptation between the ball and the
manometer occurs through water exchange, which in turn
modifies (i) the pressure exerted by the water column in
the ball (ii) the volume of the ball, hence the pressure
exerted by the shell. The final state emerges from this
feedback. Two characteristic situations are displayed in
Fig. 6. After a volume δVi has been sucked out from a
ball at equilibrium with state (∆Vi, ∆Pi), the ball finds it-
self in a state (∆Vi + δVi, ∆Pi+1,interm), which we assume
here to be an equilibrium state. Nevertheless, features of
this new state are not known by the experimentalist, who
has to open valve Vm in order to measure the pressure.
Once the ball and manometer are in contact, the pressure
difference ∆Pi+1,interm between both extremities of the
manometer is not a priori equilibrated by the water with-
drawal hi (that previously equilibrated ∆Pi). This leads to
a flow in the manometer until the outside-inside pressure
difference ∆P = Pext − Pint is equilibrated by the hydro-
static pressure associated with withdrawal h: ∆Pi−∆P =
ρg (hi − h). On an other hand, conservation of water vol-
ume implies that ∆V −∆Vi = δVi − πr2 (h− hi); hence:

∆P = ∆Pi +
ρg

πr2
(∆Vi + δVi −∆V ) . (5)

In a ∆P − ∆V diagram, this is the equation of the
straight line (”operating curve”) of slope

(
− ρg
πr2

)
that

passes through the point (∆Vi + δVi, ∆Pi) (Fig. 6). The
measured equilibrium state (∆Vi+1, ∆Pi+1) is then found
by following the state curve ℘(∆V ) from the interme-
diate equilibrium state (with valve Vm closed) (∆Vi +
δVi, ∆Pi+1,interm) up to its intersection with the straight
line of equation (5). Of course, if several branches of the
state function are intersected, the final state is expected
to lie on the same branch as that reached by the inter-
mediate state (see Fig. 6). Two limit cases for the oper-
ating curve are horizontality, which marks deformations
at imposed pressure difference, and verticality (imposed
volume). Comparing the slopes of the linear part of the
∆P − ∆V diagram and of the operating curve provides

a threshold value rc =
(
ρgR4

dY3D

)1/2
for the inner radius of

the manometer, so that r � rc corresponds to deflation
at imposed volume, and r � rc to deflation at constant
pressure. For our experimental conditions, rc ≈ 1 mm: ex-
periments are done in an intermediate regime where, in
particular, the jump between the two states before and
after buckling has a negative slope whose absolute value
is comparable to the slope of the isotropic part of the de-
flation (see Figs. 4-b and 7).

The interplay between the shell and the manometer
also sets a limitation for the determination of the state
function ℘(∆VV0

): only the part of the lower branch cor-
responding to ∆V > ∆VC , where C is the point where
the tangent has a slope

(
− ρg
πr2

)
(Fig. 6), can be explored.

Also the access to the extremity of the linear part depends
on r. Finally, a small internal radius r of the manometer
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Fig. 7. Black dots: inside-outside pressure difference ∆P for
the first deflation of the ball of Fig. 5-b, versus its relative vol-
ume variation∆V

V0
. For points after the buckling (∆V

V0
> 0.05),

the pressure is calculated from the asymptotic value of h (t) ob-
tained through the biexponential fit such as in Fig. 5-b. Blue
disks represent ρgh for measurements of h (t) performed before
stabilization of the water level in the manometer; this quan-
tity, calculated out of equilibrium, does not correspond to the
pressure difference through the ball, but its representation pro-
vides an estimation of the error performed if equilibrium is not
attained. It is to be noted that the variation of water height
in the manometer during the stabilization does not affect ∆V

V0

by a perceptible amount. In green and blue, respectively: the
reconstructed linear part of the state equation (spherical de-
formation, Eq. (2)) up to the critical pressure difference (Eq.
(3)), and the plateauing value of the post-buckling regime as
proposed by heuristic Eq. (13). Arrows are associated with the
discussion at the end of subsection 3.2.2.

allows to explore a bigger part of both the lower and up-
per branches. The counterpart lies in the dynamics toward
equilibrium, which is discussed in the following subsection.

The situation is indeed more complex for some ”slow
devices” (ball+manometer) where, in the post-buckling
state, the equilibrium takes more than a few seconds to
stabilize after the opening of valve Vm. In that case, wa-
ter outtake generates a steep withdrawal of the water level
in the manometer, followed by a slower increase toward a
limit value (via an exponential or bi-exponential relax-
ation versus time, as exposed in subsection 3.2.1). We ob-
served experimentally that the slope of the steep with-
drawal (light blue in fig. 7) never overtakes the slope of
the linear part (which corresponds to pure constriction of
the shell). We then assume that the sucking out of δVi
first generates a (rapid) uniform constriction of the sur-
face (on the figure: green arrows with the same inclination
than the linear part of ℘(∆VV0

)), which has enough time to
partly relax via a rolling of the rim that encircles the de-
pression (pink arrows) before the ball is reconnected to
the manometer. The relaxation of h observed afterwards,
then, corresponds to the end of the rim rolling toward the
(∆Vi+1, ∆Pi+1) equilibrium configuration, possibly slowed

0010111.0
0.1

1

10

100

1000

10000

,

,

Fig. 8. Characteristic equilibration times obtained from mono-
or biexponential fit of experimental h (t) curves, with respect to
τf , the time associated to viscous dissipation in the manome-
ter, calculated using Eq. (8). Open squares: upper bound for
the characteristic time of experiments leading to “immediate”
equilibrium. Filled squares: unique characteristic time for shells
showing a monoexponential decay during deflation. Upward
red (resp. downward orange) triangles: short (resp. long) char-
acteristic time for shells showing biexponential decay during
deflation. The line indicates where the experimental times and
τf (determined by Eq. (8)) would meet.

down further by other phenomena discussed in the follow-
ing subsection.

A quantitative model for identifying the origin of the
characteristic time(s) that are observed after connection
to the manometer is proposed in the next subsection.

3.2.3 Relaxation towards equilibrium

As shown in figure 8, the characteristic time is around
2 − 500 s for an exponential decay while when a biexpo-
nential fit is necessary, it unveils a longer characteristic
time of ≈ 300− 20000 s. Of course, for experiments where
the water level stabilized ”immediately”, we only have an
upper bound for the characteristic time(s), which is the
few seconds that are necessary to operate the valves be-
fore measuring h.

When valve Vm is turned open after a deflation step,
the water level in the manometer has to move in order to
adapt to the new pressure. Assuming a Stokes incompress-
ible flow in the vertical tube due to pressure difference ∆P
between both extremities, this writes:

8η (L− h(t))
dh(t)

dt
− r2∆P (t) + r2ρgh(t) = 0, (6)

where η is the viscosity of the water, L the total length
of the manometer, i.e. from the ball entry to the position
of the meniscus at initial state. We neglected the section
variations at the level of the valves and connections, and
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in the following we will replace L−h by L because h� L.
Rewriting Eq. (6) then leads to:

τf
dh(t)

dt
+ h(t) =

∆P (t)

ρg
, (7)

where τf is a caracteristic time for the decay of the
water level toward its equilibrium value, and depends on
experimental parameters through:

τf = 8ηL/(ρgr2). (8)

However, this fluid viscous dissipation is not the only
possible contribution to the water level dynamics. As ex-
posed in the end of the previous subsection, internal fric-
tions in the material that forms the shell may be of im-
portance. Our assessment is that, because of dissipation in
the shell’s material, the pressure difference between both
sides of the shell may evolve with a characteristic time τs
toward the equilibrium situation where ∆P = ℘(∆V ):

τs
∆P (t)

dt
+∆P (t) = ℘(∆V (t)). (9)

Here, we assume that τs is independent from the shape
along the equilibration process in the manometer, which is
reasonable as soon as small volume variations are imposed
at each measurement step.

When opening valve Vm in order to measure the pres-
sure, the system evolves from the intermediate state (∆Vi,
∆Pi+1,interm) to the state (∆Vi+1, ∆Pi+1); equations (9)
and (7) together with the relationship ∆V = ∆Vi + δVi +
πr2(hi − h) eventually lead to the evolution equation for
h:

τfτs
d2h(t)

dt2
+ (τf + τs)

dh(t)

dt
+ h(t)

=
℘(∆Vi + δVi + πr2(hi − h(t)))

ρg
. (10)

Before going further in the study of the dynamics to-
wards measurable equilibrium states, let us focus on the
latter, which we denote with stars. These states are char-
acterized by hydrostatic relationship ℘(∆V ∗) = ρgh∗, with:

∆V ∗ = ∆Vi + δVi + πr2(hi − h∗). (11)

Because we explore the diagram step-by-step, the sys-
tem is never far from its fixed point (except at the moment
of exact buckling, that we do not consider here), so that
we can expand the second term of equation (10) around

it : ℘(∆V ) = ℘(∆V ∗) + d℘
d∆V (∆V ∗) × (∆V −∆V ∗), and

eventually:

τfτs
d2h(t)

dt2
+ (τf + τs)

dh(t)

dt

+
[
1 +

πr2

ρg
× d℘

d∆V
(∆V ∗)

]
(h(t)− h∗)

=
℘(∆V ∗)

ρg
− h∗. (12)

11.010.0100.0

0.001

0.01

0.1

Fig. 9. Squares: values of ∆Ppl/plin, obtained from deflation
curves similar to Fig. 4-b or Fig. 7, where ∆Ppl is the minimum
value of the post-buckling regime, normalized by the slope plin
of the pre-buckling linear part. Lines: theoretical values deter-
mined using Eq. (14).

Initial conditions at t = 0 are h = hi, and from Eq (7),

τs
dh
dt = ∆P

ρg −hi =
∆Pi+1,interm

ρg −hi, which depends on the

moment at which the manometer was put in contact with
the shell.

One can easily show that the characteristic equation
associated with the left part of Eq. 12 has two roots with

negative real parts if
[
d℘
d∆V (∆V ∗)

]
>
[
− ρg
πr2

]
. If this is not

the case, the fixed point is not a stable point and cannot
be reached, as already discussed in the geometrical con-
struction of Fig. 6. This implies we cannot explore parts of
the ℘(∆V ) state function where the slope is too strongly
negative. Those are scarce in the diagram [5], which justi-
fies the choice of a U-shape manometer with water below
the air at the level of the interface.

The strongest slopes are met in the isotropic phase.
In that case, d℘

d∆V (∆V ∗) ∼ Y3D × d
R ×

1
V0

. Considering
r = 0.5 mm, Y3D = 7 MPa, the highest value 0.25 for
d/R and the lowest value 40 mm for the shell radius, we

find that πr2

ρg ×
d℘
d∆V (∆V ∗) never exceeds 0.5, so this term

can be safely ignored in Eq. (12) when one studies post-
buckling states.

For the isotropic phase as for the plateau, the solu-
tion of Eq. 12 is therefore a biexponential function with
characteristic times τf and τs.

The theoretical τf , calculated using Eq. (8), was com-
pared (Fig. 8) to the characteristic time(s) experimentally
obtained, to which we incorporated data from the ”instan-
taneous” experiments by estimating the upper bond for
the characteristic time as 1 s. We observe that apart from
one case, the characteristic times are much higher than
the viscous time τf . This suggests that the times experi-
mentally determined are intrinsic to the shells themselves,
which are made of commercial polymers. Eq. 9 needs to
be refined to account for this more complex relaxation
scenario, which depends strongly on the ball under con-
sideration as 0, 1 or 2 characteristic times larger than a



8 Gwennou Coupier et al.: Let’s deflate that beach ball
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Fig. 10. Shape diagram during deflation in the (d/R,∆V/V0) space. Thick lines indicate the ∆V/V0 value range for which
the considered transition was experimentally observed during deflation. Black: first buckling transition. Red: second buckling
transition (from NF = 1 to NF ≥ 3). Orange: transition to NF = 4. Yellow: transition to NF = 5. The grey area is an indicator
of the domain of existence of the NF = 4 configuration. Black thin line indicates the theoretical boundary for the primary
transition for ν = 0.5 (see. Eq. 8 in Ref. [7]). Red dashed line indicate the secondary transition as obtained from Eq. 11 in [7]
with ν = 0.5. Theoretical boundaries depend only weakly on ν. In the black circles are indicated the expected values for NF at
the end of the plateau (∆V/V0 ∈ [0.53; 0.76]), which are displayed in Fig. 11.

few seconds can emerge. One may wonder why the viscous
fluid characteristic time was not observed in more cases:
the sampling was adapted to the slow relaxation dynamics
of the shells, preventing data collection at times necessary
to detect exponential contribution(s) with a characteristic
time of a few seconds.

Finally, the choice of an intermediate section for the
manometer enables us to obtain fluid dissipation times
well-separated from that associated with the dissipation in
the shell material, without hindering our ability to explore
the state diagram by the use of too large sections.

3.2.4 Plateau values

We denominate by ∆Ppl (”plateau value”) the minimum
value of the outside-inside pressure difference ∆P , in the
very flattened U-shaped part of the curve after buckling.

This quantity was previously studied through numeri-
cal simulations in Ref. [7], and a heuristic dependance had
been found between ∆Ppl and ∆V

V0
. For the present paper,

we extended the simulations range and we use a differ-
ent formula to fit the simulations for the whole range of
experimental d

R , i.e. from 5.10−3 to 0.3:

∆Ppl =
Y3D

(1− ν2)
0.75 ×

(
2.34 10−6 + 0.9 (d/R)

2.57
)

(13)

In order to check the consistency of the deflation ex-
periments with the theory, we determined for each ball
the slope plin of the linear part. Theoretically, plin =
2Y3D

3(1−ν)×
d
R (from Eq. (2)). We then focussed on the nondi-

mensionalized value
∆Ppl

plin
(which avoids concerns about

an independent determination of Y3D) with respect to d
R ,

as displayed in Fig. 9. It shows that these experimental
points are consistent with the theoretical curve obtained
from Eq. (13) and the expression of plin:

∆Ppl
plin

=
(1− ν)

0.25

(1 + ν)
0.75

[
3.51 10−6 + 1.35

(
d

R

)2.57
](

d

R

)−1

(14)
This result is new and of practical interest, since equa-

tion (13) had been established for thin shells. The ex-
periments presented here show its validity for shells with
relative thickness up to d

R ≈ 0.3.

3.2.5 Towards folding

As the ball deflates along the postbuckling plateau, folds
appear in the depression for the thinnest of the shells, as
in Fig. 2-b. This secondary buckling transition is docu-
mented in literature for thin shells, both experimentally
[11] for very thin shells and theoretically [13,8], but the
only results for what concerns shells of medium thick-
ness (d/R > 0.02) were obtained numerically [3,7]. Ex-
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Fig. 11. Number NF of folds, averaged for observations be-
tween ∆V/V0 = 0.53 and 0.76 (open squares). Full square
is the experimental point of Ref. [11]. NF = 1 stands for
”axisymmetric dimple”. The thick line indicates the expected
NF = 0.94 × (d/R)−1/2, obtained from the analysis of simu-
lations in the same deflation range [7]. The dashed line corre-
sponds to situations where the secondary buckling takes place
in the [0.53, 0.76] range for ∆V/V0. The thin line corresponds
to an extrapolation of the heuristic law in the d/R range where
simulations did not predict the secondary buckling.

perimental domains of existence of emblematic non ax-
isymmetric conformation are represented in Fig. 10 in the
(d/R,∆V/V0) space. They show some discrepancies with
the boundaries obtained from simulations [3,7].

Primary buckling occurred for a volume loss much
lower than that predicted in simulations ; as in Sec. 3.1,
defects are expected to be the cause of this discrepancy.

The secondary buckling towards non-axisymmetric shapes
also occurred for values of the relative deflation signifi-
cantly lower than in simulations. Such shapes present ra-
dial folds, the number of which is denominated by NF . In
our experiments, the transition out from an axisymmet-
ric shape could happen by way of an elongation of the
dimple (the shape is then characterized by NF = 2, as
in Ref. [11]) and could be continued by the development
of three fold shape (NF = 3). Both types of shapes were
not obtained in the simulations of Ref. [7]. In these sim-
ulations, NF = 4 was seldom observed while the NF = 4
zone shows a great extent in the experimental diagram
of Fig. 10. Finally, the experimental domain of transition
from NF = 3 to NF = 4 is crossed by the heuristic transi-
tion line found in Ref. [7] for the secondary buckling, that
is characterized by a NF = 1 to NF ≥ 4 direct transition.
It may indicate that, for some numerical reason, the en-
ergy minima corresponding to low numbers of folds were
not found by the solver in the simulations, that were then
stuck to axisymmetric shapes. Note that the secondary
buckling transition line found by Knoche and Kierfeld in
Ref. [13] is close to that proposed in Ref. [7], that serves
here as a reference for this discussion.

Notwithstanding this discrepancy in the boundaries
of the axisymmetric zone, we aim here at checking the
heuristic dependence with d/R of the number of folds NF
reached at the end of the plateau, proposed in Ref. [7].

For the thinnest of the shells, the number of folds
clearly departs from this heuristic law, as shown in Fig. 11.
This discrepancy may be due to the intrinsic limitations
of an elastic model, failing to describe microscopic phe-
nomena at stake at the apex of the s-cones in thin shells,
where sharp creases are likely to host plastic deformation
[30]. Interestingly, for thick enough shells (d/R > 0.01)
less prone to extreme deformations, the number of folds
roughly follows the proposed law in (d/R)−1/2, thus con-

firming the relevance of
√
dR as the key length for the

elastic deformations of shells [7].

4 Comparison with traction experiments

Elastic properties (Young modulus and Poisson’s ratio)
were directly measured with a tensile tester Shimadzu Au-
tograph AGS-X machine equipped with a 100 N load cell.
The tensile tests were performed at ambient temperature
on dumbbell-shaped sample cut with a dogbone punch
(gauge length18 mm ×4 mm) in the ball, hence present-
ing a thickness d. Traction was performed at a maximum
crosshead speed of 2 mm/min. For each ball, two different
samples were submitted to two tractions at a maximum
deformation of 3%, during which force and elongations
(both longitudinal and transversal, using instant image
treatment) were recorded. The true stress was plotted as
a function of the nominal strain, and the Young’s modulus
was determined from the initial slope of the stress/strain
curves. Video recording of the sample during the deforma-
tion was performed in order to measure the Poisson’s ratio.
Non-linearity between longitudinal and transversal defor-
mations prevented reliable measurement of ν for half of
the samples. When we were able to unambiguously deter-
mine its values, we found 0.45 ≤ ν ≤ 0.5, as is typical for
elastomeric materials. Regardless, the Poisson’s ratio has
a small effect on values of interest, as shown by theoreti-
cal curves of figures 9 and 12. Figure 12 shows that there
is a satisfactory agreement for most of the shells between
the slope plin of the ℘(∆V ) equilibrium diagram in the
isotropic deflation regime, adimensionalised by Y3D mea-
sured by traction experiments, and its theoretical value
computed from d/R and ν. We recall that most of the
studied shells are low-cost toys obtained by rotational
casting with some variations of the thickness along the
surface. These results indicates that for moderate defor-
mations, in-plane compression (that operates in deflation
experiments) and traction can be described using the same
linear Young modulus.

5 Conclusion and discussion

Through theoretical and/or numerical studies, previous
literature provided hints about the behaviour of a ball
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Fig. 12. Slope plin of the linear part of the ∆P
(
∆V
V0

)
dia-

gram, adimensionnalized by the Young modulus Y3D directly
measured from traction experiments. Straight lines : theoreti-
cal curves for plin/Y3D = 2

3(1−ν) ×
d
R

, displayed for two values

typically bounding the Poisson’s ratio of the shells studied.

that buckles under pressure, according to its relative vol-
ume change, relative thickness and Poisson’s ratio. This
was mostly obtained through the use of a model of elas-
tic surface whose range of validity is, a priori, restricted
to thin shells (d/R < 0.02). The experimental study con-
ducted in this paper showed that thin shells deflate accord-
ing to these models, with quantitative agreement for the
relationships between volume and inside-outside pressure
difference controlled by the Young modulus of the ball.
More surprisingly, the agreement between the numerical
deflation of elastic surfaces and the experimental results
on shells of an isotropic material still holds for thicker
shells (with important relative thicknesses, up to almost
0.3), when the correspondence between 3D features and
the 2D properties of the model surface is kept unchanged.

We also identified the dynamics for the rolling of the
rim (which encloses the depression formed during the buck-
ling), with 1 or 2 relaxation characteristic times, depend-
ing on the properties that are associated to the dissipation
in the material. We plan to run dynamical simulations in
the future with models for shell membrane incorporating
dissipation, so as to identify the source of these different
times.

These results bring essential clues to the deflation of
shells, and quantitative insights in a range of parameters
that has not yet been explored experimentally or theoret-
ically.
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Donat, Phys. Rev. Lett. 108, 108303 (2012).



Gwennou Coupier et al.: Let’s deflate that beach ball 11

27. P. Marmottant, A. Bouakaz, N. De Jong, C. Quilliet, J.
Acoust. Soc. Am. 129, 1231 (2011).

28. D. Vella, A. Ajdari, A. Vaziri, A. Boudaoud, Phys. Rev.
Lett. 107, 174301 (2011).
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