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M., Anders MADSEN

Group leader, European X-ray Free Electron Laser, Hamburg, Germany , Co-

Directeur de thèse
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Résumé (français)

Les suspensions collöıdales de particules sphériques présentant des interactions

de type sphères dures font partie des systèmes les plus simples et les plus largement

étudiés en Matière Molle. Elles peuvent être considérées comme systèmes modèles

pour tester des théories plus générales, par exemple en ce qui concerne la cristal-

lisation [Pusey 1986] ou la transition vitreuse [Pusey 1987]. Malgré de nombreux

résultats théoriques et expérientaux dans ce domaine, le comportement dynamique

des suspensions de sphères dures n’a pas été complètement élucidé.

La spectroscopie à corrélation de photons X (XPCS) est une technique de dif-

fusion cohérente équivalente à la Diffusion Quasi-Elastique de la Lumière (DQEL)

[Martinez 2011], qui est un des principaux outils d’investigation de la dynamique

collöıdale [Berne 2000]. Comparée à la lumière visible, l’utilisation de rayons X

procure des renseignements sur les transferts de moment de plus haute énergie, et

évite les diffusions multiples - phénomène qui complique sensiblement les études

en DQEL pour les échantillons concentrés. De plus, l’utilisation du détecteur 2D

compteur de photons (MAXIPIX) disponible sur la ligne ID10 (ESRF) donne des

renseignements sur l’évolution de la dynamique de l’échantillon au cours de l’expo-

sition, via les fonctions de corrélation à deux temps.

Dans ce travail, nous avons étudié une suspension de sphères collöıdales de

PMMA (poly(méthylmétacrylate)) stériquement stabilisées. La distribution en taille

des particules et leur concentration ont été obtenues par diffusion de rayons X aux

petits angles (SAXS). Les expériences de XPCS effectuées aux plus grandes frac-

tions volumiques en particules (Φ > 0.5) mettent en évidence à la fois des temps

de diffusion courts et des temps longs autour des pics de Bragg. Une comparaison

avec une précédente étude [Orsi 2012b] montre, pour une petite gamme de frac-

tions volumiques, une modification drastique de la loi d’échelle entre les temps de

relaxation courts et les temps longs qui avait été initialement proposée par Segrè

et Pusey [Segrè 1996]. L’analyse des fonctions de corrélation à deux temps révèle

un comportement dynamique complexe des échantillons légèrement au-dessus de la

transition vitreuse, alors qu’on n’observe aucun signe de modifications structurales

via diffusion statique. Utiliser la XPCS sur des suspensions en écoulement dans des

canaux cylindriques avait fait ses preuves pour renseigner à la fois sur les propriétés

dynamiques et d’écoulement de suspensions diluées [Fluerasu 2010]. Ici, nous discu-

tons les potentialités et les limites de cette méthode, en étudiant l’interaction entre

les propriétés rhéologiques et dynamiques dans ces systèmes complexes modèles que

sont les verres collöıdaux.



Abstract

Colloidal suspensions of spherical particles presenting hard-sphere like interac-

tions is one of the simplest and most widely studied systems of soft condensed

matter. They can be treated as a model for testing fundamental theories, regarding

e.g. crystallization [Pusey 1986] or glass transition [Pusey 1987]. Despite the long

history of both theoretical and experimental research, the dynamic behavior of hard

sphere suspensions still lacks a complete understanding.

X-ray Photon Correlation Spectroscopy (XPCS) is a coherent scattering tech-

nique equivalent to Dynamic Light Scattering (DLS) [Martinez 2011], which is one

of the main tools used in the study of colloidal dynamics [Berne 2000]. Comparing to

visible light, the use of X-rays provides access to higher momentum transfer vector

values and allows to avoid multiple scattering – a phenomena significantly compli-

cating DLS measurements on concentrated samples. Moreover, the use of a fast,

single photon counting area detector (MAXIPIX) available at the ID10 beamline at

ESRF gives insight into the evolution of sample dynamics during the measurement

time by the means of two-time correlation functions.

In this work suspensions of sterically stabilized poly(methyl methacrylate)

(PMMA) colloidal spheres were used. Particle size, polydispersity and volume frac-

tions of the samples were obtained using the Small-Angle X-ray Scattering (SAXS)

technique. XPCS measurements at high volume fractions (Φ > 0.5) show both

short- and long-time diffusive behaviour for scattering vector values around, but

not restricted to the structure factor peak position. A comparison with an earlier

study [Orsi 2012b] shows a dramatic change in the approximate scaling between

the short- and long-time relaxation rates, initially proposed by Segrè and Pusey

in [Segrè 1996], over a small range of volume fractions. The analysis of two-time

correlation functions reveals complex dynamic behaviour of a sample slightly above

the glass transition, while no signs of structural changes are observed in the static

scattering patterns. The studies indicate the dynamics being governed by a jam-

ming transition driven by restrictions in free volume rather than a glass transition

as know from the mode-coupling theory. A combination of XPCS with flow in

a cylindrical channel has demonstrated previously to give both dynamic and flow

properties of dilute suspensions [Fluerasu 2010]. Here we discuss the potential and

limitations of this method in the study of the interplay between rheological prop-

erties and dynamics in complex systems such as colloidal glasses.



Introduction (français)

“Suspension collöıdale” est un terme qui peut s’appliquer à une large gamme de

substances. Les collöıdes sont très présents dans la vie de tous les jours, d’autant

plus que beaucoup de constituants du vivant eux-même sont de nature collöıdale,

comme les suspensions de protéines ou de polysaccharides, ou le sang. On rencontre

facilement dans les applications industrielles des dispersions d’une phase dans une

autre, les plus courantes étant par exemple le ciment, le papier, certaines encres et

les peintures. La science des collöıdes concerne une large variété de matériaux et de

propriétés, ce qui en fait un domaine de recherches multidisciplinaire, aux confins

de la physique, de la chimie, et du génie chimique.

Outre leur importance pratique, les collöıdes présentent un intérêt en tant

que système modèle pour l’échelle atomique: une suspension de particules quasi-

identiques peut être décrite à l’aide des outils et théories statistiques développés

pour les états liquides et solides simples [Pusey 1991]. Il a été montré qu’une col-

lection de particules de type sphères dures peut présenter des transitions de phase,

comme la cristallisation ou la transition vitreuse [Pusey 1986, Pusey 1987], les par-

ticules jouant le rle des atomes. Etant d’une taille typiquement de trois ordres de

grandeur au-dessus des atomes, les collöıdes sont considérablement ralentis. Ceci

rend la dynamique des collöıdes beaucoup plus accessible expérimentalement.

Il peut sembler surprenant que le comportement dynamique d’un système com-

posé de sphères dures dans un liquide ne soit pas encore complètement compris,

malgré un long passé de recherche théorique et expérimentale. Plusieurs aspects

des collöıdes contribuent à cet état de fait. Tout d’abord, les particules collöıdales

sont généralement polydisperses en taille, surtout celles d’origine synthétique. Ceci

joue sur les comportements à la fois dynamique et structural du système. Ensuite, il

peut y avoir plusieurs types d’interactions entre les particules, et leur résultante peut

être lourdement influencée par leur environnement. Enfin, le liquide qui suspend

les particules transmet quasi-instantanément les interactions hydrodynamiques, ren-

dant encore plus complexe la description du comportement des particules.

Une des gageures de la science des collöıdes concerne la dynamique aux

temps longs des suspensions concentrées. Ce sujet a été défriché par les

travaux expérimentaux pionniers de Pusey, van Megen et collaborateurs en Dif-

fusion Quasi-Elastique de la Lumière (DQEL) (par ex. [Pusey 1986, Pusey 1987,

van Megen 1991, van Megen 1994]). Des procédures de préparation d’échantillons

non triviales et des techniques de diffusion complexes ont été développées pour

diminuer la diffusion multiple au sein des phases denses de collöıdes, comme la Dif-

fusion de Lumière Dynamique à Deux Couleurs (TCDLS) [Segrè 1995c]. Une étude

utilisant la TCDLS, rapportée dans [Segrè 1996], montre un comportement proche
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d’une loi d’échelle pour les fonctions de diffusion intermédiaires d’une population

de particules stériquement stabilisées, qui se réduisent à une courbe matresse quand

elles sont divisées par le coefficient de diffusion aux temps courts DS(q). Ceci in-

dique une proportionnalité simple, indépendante de q, entre DS(q) qui décrit la

diffusion d’une particule dans une cage formée par les voisins à haute fraction vo-

lumique, et le coefficient de diffusion aux temps longs DL(q), associé au temps de

vie des cages. Une explication semi-quantitative de cette loi d’échelle a été proposé

dans la théorie idéalisée du couplage de modes de [Fuchs 1999], avec la remarque

qu’elle pourrait ne pas être valide dans des systèmes autres que les suspensions de

sphères dures stériquement stabilisées. De fait, une étude expérimentale effectuée

par la suite sur une suspension stabilisée par des charges de surface [Lurio 2000]

et qui utilise l’équivalent X de la DQEL, à savoir la spectroscopie de correlation

de photons X (XPCS), n’a pas montré ce type de loi d’échelle. De manière sur-

prenante, une étude plus récente effectuée elle aussi en DQEL sur des systèmes

stabilisés par des charges a clairement montré des données qui suivent le même

comportement que celui décrit par Segrè et Pusey [Holmqvist 2010]. Il est peu

probable que la différence provienne des deux techniques utilisées, puisqu’une com-

paraison détaillée entre XPCS et DQEL a montré que les deux méthodes donnent

des résultats équivalents [Martinez 2011]. Dans le même papier, les auteurs mon-

trent qu’ils pouvaient définir sans ambigité un régime de diffusion aux temps longs,

du type de celui utilisé dans [Segrè 1996], uniquement autour du pic du facteur de

structure, dans une suspension de particules stériquement stabilisées. Le comporte-

ment de DS(q)/DL(q) n’a donc pas pu être testée.

Le but de cette thèse est de clarifier le comportement de suspensions concentrées

de sphères dures aux temps longs. Les échantillons étudiés contiennent des partic-

ules stériquement stabilisées de poly(méthyl méthacrylate) (PMMA) suspendues

dans de la décaline - un système semblable à celui utilisé par Segrè et Pusey dan

[Segrè 1996]. La gamme de fractions volumiques testées atteint la fraction volu-

mique critique de transition vers le verre collöıdal (Φ ≈ 0.58). La dynamique des

particules a été étudiée en XPCS, ce qui évite la diffusion multiple et les techniques

de préparation d’échantillons délicates. Un soin particulier a été apporté pour éviter

l’endommagement des échantillons par le rayonnement pendant les mesures. Les

fonctions de corrélation mesurées à proximité du pic de S(q) montrent une relax-

ation caractéristique en deux temps, avec deux régions clairement identifiées (temps

courts et temps longs). Le coefficient de diffusion aux temps courts dépendant de

q, obtenu par ajustement des fonctions de diffusion intermédiaires, s’avère suivre

les oscillations de S(q) ainsi que prédit et observé précédemment. Les fonctions

de diffusion intermédiaires normalisées par DS(q) se rassemblent sur une courbe

unique jusqu’au début de la région diffusive aux temps longs, identifiée pour les

q proches du pic de S(q). L’utilisation d’un détecteur 2D autorise le calcul des

fonctions de corrélation à deux temps. Elles sont discutées pour l’échantillon le

plus concentré que nous ayions étudié, près de la transition vitreuse, où un com-

portement hors d’équilibre complexe est observé. De plus, une étude de XPCS

sous écoulement a été publiée, où le traitement des résultats fournit à la fois des
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informations dynamiques et des informations liées à l’écoulement [Fluerasu 2010].

Des expériences préliminaires dans des conditions d’écoulement semblables ont été

également effectuées sur des échantillons concentrés. La possibilité d’en faire une

étude quantitative est discutée dans ce travail.

La thèse est organisée comme suit:

– Le premier chapitre présente la technique de diffusion de rayons X aux petits

angles (SAXS), qui a été utilisée pour obtenir des informations structurales

sur les échantillons étudiés. Les principes de base de la diffusion X sont

discutés, suivis par une description plus détaillée des modèles pertinents pour

ce travail.

– La technique principalement utilisée dans cette étude, la spectroscopie de

corrélation de photons X (XPCS), est présentée dans le deuxième chapitre.

Les propriétés de cohérence du rayonnement X du synchrotron y sont dis-

cutées, en introduction au paragraphe traitant de la diffusion cohérente des

matériaux désordonnés. On y trouve une description des quantités mesurées

et de leur signification physique. Le chapitre se clôt sur une vue d’ensemble

d’un dispositif expérimental typique.

– Le troisième chapitre introduit l’essence de la physique des systèmes

collöıdaux, en insistant sur les supensions de sphères dures qui sont étudiées

dans cette thèse. Les méthodes permettant d’éviter l’agglomération des par-

ticules sont présentées ainsi que le diagramme de phase général des suspen-

sions de sphères dures. Le type de suspensions utilisé dans cette étude est

détaillé (propriétés, synthèse). La fin du chapitre comporte un rappel de

l’état de l’art en ce qui concerne la dynamique des suspensions cocnentrées

de sphères dures.

– Le chapitre 4 présente les résultats de XPCS sur suspensions collöıdales diluées

en écoulement. Ces résultats ont été publiés dans [Fluerasu 2010]. L’influence

du cisaillement sur la dynamique des particules, suivie par XPCS, y est

discutée, suivie par une description du dispositif expérimental dédié. Les

résultats présentés montrent que la XPCS peut être utilisée pour mesurer à

la fois la réponse advective au cisaillement appliqué, et la dynamique diffusive

d’une suspension collöıdale en écoulement continu.

– Le cinquième chapitre discute le résultats de mesures dynamiques sur collöıdes

concentrés. Tout d’abord, le point est fait sur les recherches concernant le

comportement en loi d’échelle de la fonction de diffusion intermédiaire, qui

est l’un des sujets principaux de cette thèse. Cette mise au point est suivie

par une description des procédures d’acquisition et de traitement de données.

Ensuite, les résultats expérimentaux sont présentés, qui étendent les études

précédemment évoquées au domaine des fractions volumiques proches de la

transition vitreuse. Le comportement hors d’équilibre de l’échantillon le plus

concentré, observé en correlation à deux temps, est discuté.

– Le dernier chapitre de la thèse présente des résultats préliminaires de mesures

de suspensions concentrées en écoulement, suivis par une discussion sur la

possibilité d’utiliser le type d’analyse exposé au chapitre 4 pour des collöıdes
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dilués sans interactions. Il se termine avec un rappel général des résultats, et

des commentaires sur les perspectives de continuation du sujet.



Introduction

Colloidal suspension is a very broad term, which can be attributed to an ex-

tremely wide range of substances. Colloids are ubiquitous in every-day life, includ-

ing the fact that many components of “life” itself have colloidal nature, like protein

and polysaccharide solutions or blood. Dispersions of one phase in another are

common in industrial applications, with cement, paper, inks and paints as just a

few examples. This large variety of materials and properties makes colloid science a

multidisciplinary discipline, spanning physics, chemistry and chemical engineering.

Beside of their practical importance, the interest in studying colloids lies in their

ability to serve as models of atomic systems. A suspension of (nearly) identical parti-

cles can be described using tools from statistical mechanics and theories developed

for simple liquid and solid states [Pusey 1991]. An assembly of hard-sphere like

particles has been shown to present phase transitions, like crystallization and glass

transition [Pusey 1986, Pusey 1987], as known from atomic and molecular systems.

Being typically more than three orders of magnitude larger than atoms, colloids

move significantly slower. This makes colloidal dynamics much more accessible for

studies.

It may seem surprising that the dynamic behaviour of a system composed of

hard spheres suspended in a liquid still lacks complete understanding, despite a long

history of theoretical and experimental research. Several aspects of colloids con-

tribute to this state. Firstly, colloidal particles, especially those of synthetic origin,

are usually polydisperse in size. This influences both the dynamic and structural

behaviour of the system. Secondly, various types of interaction can be present be-

tween the particles, often heavily influenced by their environment. Thirdly, the

suspending liquid is a mediator of quasi-instantaneous hydrodynamic interactions,

making the description of particle behaviour even more complex.

One of the challenging issues in colloid science is the long-time dynamics

of concentrated suspensions. Experimental studies of this subject were pio-

neered by Pusey, van Megen and collaborators (e.g. [Pusey 1986, Pusey 1987,

van Megen 1991, van Megen 1994]) using Dynamic Light Scattering. To decrease

the amount of multiple scattering present in dense colloids, elaborate sample prepa-

ration procedures or complex scattering techniques, like Two-Color DLS (TCDLS)

[Segrè 1995c] have been developed. In a study reported in [Segrè 1996] using

TCDLS the authors observed an approximate scaling behaviour of the measured

intermediate scattering functions of an assembly of sterically stabilized particles,

which collapsed onto a single master curve when divided by the short-time diffusion

coefficient DS(q). This indicates a simple, q independent proportionality between

DS(q), describing particle diffusion in a cage of neighbours formed at high packing
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fraction, and the long-time diffusion coefficient DL(q), associated with the break-

down of the cages. A semi-quantitative explanation of the scaling has been proposed

within the idealized mode-coupling theory in [Fuchs 1999], with a remark that it

may not be valid in systems other than sterically stabilized hard spheres. In fact,

an experiment performed later on a charge stabilized suspension [Lurio 2000], us-

ing the X-ray equivalent of DLS – X-ray Photon Correlation Spectroscopy (XPCS),

showed no such scaling in this system. Surprisingly, a more recent study of a charge

stabilized system using DLS, published in [Holmqvist 2010] clearly shows data fol-

lowing the same behaviour as found by Segrè and Pusey. It is unlikely that the

difference comes from the different techniques used, since a detailed comparison

of XPCS and DLS, published in [Martinez 2011] shows that the two methods give

equivalent results. In the same paper the authors show that they were unable to

unambiguously define a long-time diffusive regime away from the structure factor

peak in a suspension of sterically stabilized particles, similar to the one used in

[Segrè 1996]. Consequently, the q behaviour of DS(q)/DL(q) ratio could not be

tested.

The aim of this thesis is to clarify the subject of long-time behaviour of hard

sphere colloids at high volume fractions. The samples are sterically stabilized

poly(methyl methacrylate) (PMMA) particles suspended in decalin – a system sim-

ilar to the one studied by Segrè and Pusey in [Segrè 1996]. The range of volume

fractions probed reaches the colloidal glass transition (Φ ≈ 0.58). Particle dynamics

was probed using XPCS, avoiding multiple scattering and difficult sample prepa-

ration techniques, e.g. index matching. Much care was taken to avoid radiation

damage during the measurements. The measured correlation functions show the

characteristic two-step decay, with clearly identified short-and long-time diffusive

regions in the vicinity of the S(q) peak. The q dependent short-time diffusion coef-

ficient extracted from fits of the intermediate scattering functions is found to follow

the oscillations of S(q), as predicted and observed before. Intermediate scattering

functions scaled by DS(q) collapse on a single curve up to the time which marks the

beginning of the long-time diffusive region identified for q close to the S(q) peak.

The use of a fast 2D detector allows for calculations of two-time correlation func-

tions that can be used to study non-equilibrium dynamics. They are discussed for

the sample at highest volume fraction probed, near the glass transition, where com-

plex non-equilibrium behaviour is observed. The results support a picture where

less free volume at high concentrations leads to kinetic arrest rather than a glass

transition as in the mode-coupling description.

Additionally, results of XPCS measurements under flow of dilute colloidal sus-

pensions are reported, which allowed to extract flow-related and dynamic infor-

mation at the same time [Fluerasu 2010]. Preliminary measurements in similar

conditions were also performed with concentrated samples. The possibility of their

quantitative analysis is discussed in this work.

The thesis is organized as follows:

– The first chapter introduces the Small-Angle X-ray Scattering (SAXS) tech-

nique, which has been used to gain structural information about the samples
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investigated. Basic principles of X-ray scattering are discussed, followed by a

more detailed description of models relevant for this work.

– The main technique used in this study, X-ray Photon Correlation Spec-

troscopy (XPCS) is described in the second chapter. Coherent properties

of synchrotron X-rays are discussed as an introduction to the subject of co-

herent scattering from disordered materials. An explanation of the measured

quantities and their physical meaning is given. The chapter ends with an

overview of a typical experimental setup.

– The third chapter gives a basic introduction to the physics of colloidal systems,

focusing on hard-sphere suspensions, which are studied in this thesis. The

methods of preventing particle agglomeration are discussed, followed by the

phase diagram of a hard-sphere suspension. Next, the samples used in this

study are described with their basic properties and preparation procedures.

An overview of the current knowledge concerning dynamics of concentrated

hard-sphere suspensions is given at the end of this chapter.

– Chapter four presents the results of XPCS measurements performed un-

der flow on a dilute colloidal suspension. These results were published in

[Fluerasu 2010]. The influence of shear flow on particle dynamics measured

with XPCS is discussed, followed by a description of the specific experimental

setup. The presented results show that XPCS can be used to measure both

the advective response to applied shear and the diffusive dynamics of a dilute

colloidal suspension under continuous flow.

– The fifth chapter discusses the results of dynamics measurements on colloids

at high volume fractions. First, a summary is given on the dynamics of hard-

-sphere suspensions at high volume fractions. The review is followed by a

description of the data acquisition and processing procedures. Next, exper-

imental results are presented, which extend the previously reported studies

to volume fractions near the colloidal glass transition. The non-equilibrium

behaviour of the sample at highest Φ analysed, observed in the two-time cor-

relation functions is discussed.

– The final chapter of this thesis presents preliminary results of measurements

of the concentrated suspensions under flow, followed by a discussion of the

possibility of applying a similar kind of analysis as the one reported in chapter

4 for dilute, non-interacting colloids. It ends with a general view of the results

and comments on the perspectives of the subject continuation.



Résumé du Chapitre 1

Ce chapitre comporte une introduction à la technique de diffusion de rayons X

aux petits angles (SAXS). Les principes théoriques du rayonnement sont présentés

dans le contexte du rayonnement X synchrotron. L’intensité diffusée par une suspen-

sion collöıdale est calculée, tout d’abord en considérant la diffusion d’une particule

unique (facteur de forme), puis en introduisant le terme qui rend compte des in-

teractions interparticulaires dans une suspension concentrée (facteur de structure).

Le facteur de structure est calculé en utilisant l’approximation courante de Percus-

Yevick pour la fonction de corrélation directe. Les effets de la polydispersité en taille

sont discutés. Pour une suspension de référence de sphères dures polydisperses dont

les rayons présentent une distribution de Schultz, une solution analytique exacte est

donnée. La fin du chapitre présente une comparaison, pour l’intensité diffusée, entre

la solution analytique et la factorisation couramment pratiquée en un produit de

facteurs de structure et de forme.



Chapter 1

Small-Angle X-ray Scattering
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1.1 Introduction

This chapter introduces the Small-Angle X-ray Scattering (SAXS) technique

performed with X-rays produced in a synchrotron facility – the European Syn-

chrotron Radiation Facility (ESRF) in Grenoble, France. The term synchrotron

radiation, originating from a specific type of particle accelerator, is currently used

more generally to describe electromagnetic radiation produced by charged particles

moving at relativistic velocities in magnetic fields. The Lorentz force acting on the

particles along the direction perpendicular to their instantaneous velocities makes

them travel along curved paths. Radiation emission is a consequence of the radial

acceleration experienced by the charge, as opposed to bremsstrahlung, emitted by

electrons encountering linear deceleration when impinging on a metal anode in an

X-ray tube.

In a III generation synchrotron light source, like the ESRF, electrons are kept

circulating in a closed orbit in a storage ring (see figure 1.1). Three types of

devices are used to produce X-rays: bending magnets, inserted into the path of

charged particles, keep them circulating, at the same time being a source of a

broad spectrum of intense electromagnetic radiation. Wigglers and undulators are

situated in straight sections. They are composed of magnetic arrays producing

alternating forces making the particles oscillate, emitting radiation at each turn.

A III generation synchrotron facility is mainly based on insertion devices (wigglers

and undulators).

Irradiation of an inhomogeneous medium will cause scattering by the fluctua-

tions. This statement is generally valid, independent of the type of radiation. The

difference appears when the details of the interaction with the scattering medium

are considered. Visible light is scattered due to differences in the index of refraction,

while in case of X-rays it is due to electron density fluctuations. Neutrons scatter

on atomic nuclei.



1.1. Introduction 3

Figure 1.1: A sketch of a typical X-ray beamline at a III generation syncrhotron

source. Radiation is produced by bunches of charged particles (electrons or

positrons) which circulate in a storage ring. The ring is composed of straight sec-

tions with undulators or wigglers, forcing the particles to follow an oscillatory path

along their average trajectory. The intense radiation produced is then formed by

a number of optical elements, such as a monochromator, focusing device, etc., in

order to fulfill the experimental requirements. Reproduced from [Als-Nielsen 2011].

Figure 1.2 shows a schematic representation of a scattering experiment. Some of

the radiation impinging on a sample passes through unaffected, some is scattered.

A detector can be used to measure the intensity of the scattered radiation at a cer-

tain angle 2θ. In principle, the scattering geometry allows to perform three types of

experiments [Pusey 2002]: (i) measurement of angular dependence of the average

scattered intensity I(θ), called static scattering, yielding structural information,

(ii) if the incident radiation is coherent, the analysis of time and angular depen-

dence of fluctuations in the scattered radiation I(θ, t) is possible (instead of time

dependence, the frequency or energy changes can be measured) – this is dynamic

(quasi-elastic or inelastic) scattering, yielding dynamic information, (iii) provided

that the equipment is well calibrated, a measurement of the time (frequency) av-

eraged absolute magnitude of the scattered intensity will give information on the

mass or molecular weight of the scatterers.

In this work the first two methods are applied to investigate a disordered, soft

matter system. This chapter presents the basic principles of static scattering applied

to X-rays – the SAXS, used to gain structural information about the samples. An
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introduction to X-ray Photon Correlation Spectroscopy (XPCS), exploiting quasi-

elastic scattering of coherent radiation to study sample dynamics, will be given in

the following chapter.

1.2 Small-Angle X-ray Scattering

As already mentioned in the introduction, the derivation of basic scattering

theory is independent of the type of scattered radiation. Here it is presented in the

context of synchrotron X-rays.

1.2.1 Basic principles

A schematic layout of a SAXS experiment is presented in figure 1.2. The highly

collimated, monochromatic X-ray beam impinges on a sample. The scattered in-

tensity is recorded using a two dimensional detector, which is guarded from the

transmitted beam by a beamstop placed just in front of it. Looking at the geome-

try of the incident and scattered wavevectors ~ki and ~kf (Figure 1.3), the momentum

transfer or scattering vector ~q can be defined as ~q = ~ki−~kf . Its magnitude is related

to the scattering angle 2θ by:

q = |~q| = 4π

λ
sin (θ), (1.1)

where λ is the X-ray wavelength. Having a unit of reciprocal length, q indicates

the length scales probed by the scattering experiments. Typical values covered in a

synchrotron SAXS experiment are between 0.006 < q < 6 nm−1 [Narayanan 2008].

Wavevector magnitude is related to wavelength as |~k| = 2π/λ. Knowing this the

given q range can be translated into real space dimensions between 1 µm and 1 nm.

The usual approach deriving a formula describing the scattered intensity begins

with a consideration of single electron scattering. A detailed derivation can be found

e.g. in [Glatter 1982, Als-Nielsen 2011]. The fundamental quantity measured in a

scattering experiment is the differential scattering cross section dσ/dΩ. It is defined

as the ratio between the scattered intensity Isc (number of photons registered by

the detector per second) to the incident beam flux φ0 (number of photons passing

through unit area per second) and the observed solid angle ∆Ω. It can be expressed

in terms of the Thomson scattering length, equal to the classical electron radius r0:

(

dσ

dΩ

)

=
Isc

φ0∆Ω
= r20P, (1.2)

where r0 is:

r0 =
e2

4πε0mc2
= 2.82× 10−5 Å (1.3)

and P is the polarization factor, which depends on the X-ray source. Radiation

coming from a synchrotron insertion device is linearly polarized in the horizontal
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2D detector

beam stop

sample

X-ray beam
~ki

~kf

Figure 1.2: Schematic layout of a SAXS experimental setup, showing the inci-

dent, scattered and transmitted X-ray beams, beamstop and a 2D detector with an

isotropic scattering pattern.

plane and elliptically polarized out of this plane [Als-Nielsen 2011]. The polarization

factor for different scattering planes is equal to:

P =

{

1 vertical scattering plane

cos2 θ horizontal scattering plane
(1.4)

Consequently, the scattered intensity at θ = 90◦ vanishes in the horizontal plane.

In the small angle limit (typically θ < 5◦) the influence of polarization can be

neglected, assuming P ≈ 1.

The classical derivation of equation 1.2 is based on relating the incident and

scattered intensities to the values of the corresponding electric fields. The electron

is then treated as a source of a spherical wave, for which the electric field can

be evaluated from Maxwell’s equations [Jackson 1998, Als-Nielsen 2011]. It should

be noted that the resulting differential cross section, as well as the total cross

section found by integrating dσ/dΩ over all possible scattering angles, is a constant,

independent of energy. This is not valid at low photon energies (visible light)

and near the so called absorption edges – energies which correspond to electron

transition or ionization potentials.

Proceeding to X-ray scattering from an atom with Z electrons, whose distri-

bution can be described by a number density ρ(~r), the scattered radiation is a

superposition of contributions from all volume elements of the charge distribution.

The total scattering length of an atom is:

− r0f
0(~q) = −r0

∫

ρ(~r) exp (i~q · ~r)d~r, (1.5)
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X-ray beam

~ki

Sample

~kf ~q = ~ki − ~kf

2θ

Figure 1.3: Definition of the momentum transfer (scattering) vector ~q.

where f0(~q) is the atomic form factor, which in the limit of ~q → 0 takes the max-

imum value f0(~q = 0) = Z. With ~q → ∞ and the different volume elements

scattering out of phase the form factor f0(~q → ∞) = 0.

Considering higher complexity level – molecules, adequate form factors can be

defined by summing the f0(~q) of individual atoms.

In a real experiment, the incident radiation is not only scattered, but also ab-

sorbed by the sample. This can be taken into account by giving the absorption

coefficient µ, relating the intensity IT transmitted through a sample of thickness ls
to the initial value I0:

IT = I0 exp [µls]. (1.6)

The intensity scattered at small angles also depends on the sample thickness

[Glatter 1982]:

Isc ∝ ls exp [−µls]. (1.7)

This expression has a maximum at lmax = 1/µ, which defines the optimal sam-

ple thickness – the compromise between absorption and scattering. The value of

transmission T = IT /I0 at lmax can be calculated from equation 1.6: T = 1/e.

Including absorption and the detector efficiency ε, the experimental scattered

intensity can be expressed as [Lindner 2002]:

Isc = I0εT∆ΩAsls
dΣ

dΩ
, (1.8)

with As being the cross section of the beam and dΣ/dΩ - the differential scattering

cross section per unit volume: dΣ/dΩ = 1/V dσ/dΩ. Since the value which contains

structural information is the differential scattering cross section, an essential step

of quantitative SAXS analysis is the normalization of the measured intensities to

dΣ/dΩ, which will from now on be denoted by I(q) with units of reciprocal length

[Narayanan 2008].

1.2.2 Discrete scatterers – form and structure factor

After the general introduction a more specific case of discrete scattering objects

suspended in a liquid will now be discussed. These objects, referred to as “particles”,
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consist of many molecules, and may correspond to polymer molecules, micelles,

colloidal particles, etc.

Starting with the simplest case – a dilute suspension of N identical particles per

unit volume, the inter-particle interactions can be neglected, leading to a simple

expression for the scattered intensity, which depends mainly on the shape and size

of an individual scatterer [Narayanan 2008]

I(~q) = N |F (~q)|2, (1.9)

where F (q) is the single particle form factor, which can be defined by analogy to

the atomic form factor (equation 1.5), as a coherent sum of scattering amplitudes of

individual scattering centres building the particle. It can be derived from the elec-

tron density distribution by calculating its Fourier transform. Here coherent implies

preserving the phase relationship between different scattered waves and summation

of their amplitudes. Assuming a continuous electron density distribution, the F (q)

can be expressed as an integral over the particle volume V [Narayanan 2008]:

F (~q) =

∫

V
∆ρ(~r) exp [i~q~r]dV, (1.10)

where ∆ρ(~r) = ρ(~r) − ρs is the relative scattering length density – the difference

between the value for the sample (ρ(~r)) and the suspending liquid (ρs). For uniform

electron density ρ(~r) becomes independent of ~r and is given by:

ρ =
nedMNA

MW
r0 (1.11)

with ne being the number of electrons in a molecule, dM – mass density, NA – the

Avogadro number and MW – molar mass.

In some cases the integral in equation 1.10 can be evaluated analytically, in

others – numerically. A collection of form factors for particles of different shapes

can be found for instance in [Pedersen 1997] and references therein. Here only the

simplest example of a homogeneous sphere of radius R is given:

F (q) =
3

(qR)3
[sin (qR)− qR cos (qR)] . (1.12)

In the derivation of equation 1.12 the ∆ρ(~r) is replaced by a constant value of the

density difference between the particle and the suspending medium. Because of the

spherical symmetry of the discussed system only the magnitude of the scattering

vector |~q| needs to be taken into account, which for brevity will from now on be

denoted as q.

Equation 1.12 assumes that all particles are identical. In real systems this is

most often not true – the scatterers are polydispersed. Instead of just the particle

radius, a normalized distribution function D(R) (
∫∞
0 D(R)dR = 1) is needed to

describe the size. This complicates the expression for scattered intensity:

I(q) = N∆ρ2
∫ ∞

0
D(R)V 2(R)|F (q,R)|2dR. (1.13)
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Figure 1.4: The influence of particle radius polydispersity on the form factor of

spheres. The dashed blue line is a plot of equation 1.12. The solid red line presents

a polydisperse sphere function derived from equation 1.13 assuming Schulz radius

distribution.

Here V (R) is the particle volume and the integration is performed over all possible

particle radii R. For spherical particles an analytical expression can be derived

for different distributions, such as Gaussian, Schulz or rectangular [Aragon 1976,

Kotlarchyk 1983]. The effect of polydispersity is demonstrated in figure 1.4 on the

example of spherical particles with a Schulz size distribution, expressed as:

f(r) =

(

Z + 1

〈r〉

)Z+1

rZ exp

[

−
(

Z + 1

〈r〉

)

r

]

/Γ(Z + 1), Z > −1, (1.14)

with the particle radius root mean square deviation from the mean 〈r〉 given by:

σr =
〈r〉√
Z + 1

. (1.15)

In the above equations Z is the Schulz “width factor”, which has been set to Z = 300

for the calculation of the red curve presented in figure 1.4. An example of the Schulz

distribution function for different values of Z (1, 10, 50 and 100) is plotted in figure

1.5.

In order to extend the theory to concentrated systems of particles, an additional

term – the structure factor S(q) needs to be introduced to account for inter-particle

interactions. In general, S(q) is a function of the interaction potential and N . In the

limit of dilute, non-interacting particles, S(q) ≈ 1. If the scatterers are spherically
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Figure 1.5: A plot of the Schulz distribution function (equation 1.14) for different

values of Z parameter.

symmetric and the size distribution is narrow, I(q) can be factorized to the form

[Pedersen 1997, Als-Nielsen 2011]

I(q) = NV 2∆ρ2P (q)S(q), (1.16)

where P (q) = |F (q)|2. The S(q) can be related to a function defined in direct space –
the radial distribution function g(r) (also called the pair correlation function), which

gives a statistical description of the structure of a disordered system [Klein 1996]:

S(q) = 1 + 4πN

∫ ∞

0
(g(r)− 1)

sin (qr)

qr
r2dr (1.17)

More exactly, g(r) is related to the probability of finding a particle at a distance

r from the centre of a given particle. The first term in brackets in the integral

of equation 1.17 is the so called total correlation function h(r) ≡ g(r) − 1. In a

many-body system the h(r) is given in terms of the a priori unknown direct, two-

-particle correlation function c(r) and multiple indirect correlations. The indirect

part describes the contributions of chains of direct correlations starting from one of

the particles of the pair and ending at the other. This leads to the Ornstein-Zernike

(OZ) equation [Klein 1996]:

h(r) = c(r) + n

∫

c(|~r − ~r ′|)h(~r ′) d~r ′ (1.18)
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In order to use the OZ equation to calculate h(r), and from this the structure factor,

an assumption needs to be made about the form of c(r). This is the so-called clo-

sure relation, which introduces approximations. Several closure relations have been

developed. A more detailed overview is given e.g. in [Klein 2002]. One commonly

used is the Percus-Yevick (PY) approximation, given by [Narayanan 2008]:

c(r) = g(r)

(

1− exp

[

−U(r)

kBT

])

(1.19)

It allows to obtain an analytical solution of the OZ equation and works well for short-

range potentials U(r), such as the hard-sphere interaction [Klein 1996, Chen 2002]

used in this thesis.

Knowing the form of c(r) allows to calculate its Fourier transform to obtain c(q)

and calculate the S(q) in the monodisperse case from:

S(q) =
1

1−Nc(q)
(1.20)

It is more complicated to obtain the structure factor of polydisperse particles. The

separation of P (q) and S(q), as in equation 1.16, is no longer possible. The expres-

sion for the scattering intensity for a system containing a continuous distribution of

particles with radii ri can be given in terms of their scattering amplitudes Fi and

partial structure factors Sij [Griffith 1987]:

I(q) = N

∫ ∞

0
F 2
i (q)f(ri)dri +N

∫ ∞

0

∫ ∞

0
Fi(q)Fj(q)Sij(q)f(ri)f(rj)dridrj (1.21)

Here f(ri) and f(rj) are the distribution functions of particles i and j.

The integrals in equation 1.21 can be solved analytically by taking the scattering

amplitude of a uniform sphere (equation 1.12) and Sij(q), as derived in [Blum 1979]

within the Percus-Yevick approximation. Detailed derivation and the complete

expression is presented in [Griffith 1987], and omitted here for the sake of brevity.

In this approach the static structure factor of a polydisperse system can be obtained

by setting Fi(q) = Fj(q) = 1 in equation 1.21. Solving just the first integral in

equation 1.21 gives the expression for the polydisperse form factor, equivalent to the

one published previously in [Aragon 1976]. Figure 1.6 presents a comparison of the

analytical solution for I(q) (red solid line) and the factorized form, I(q) ∝ P (q)S(q)

(blue solid line). Both curves were calculated using identical input parameters,

that is particle radius of 100 nm, Z = 100, which corresponds to polydispersity

σ = σr/〈r〉 = 0.1 and volume fraction Φ = 0.3. The factorized form clearly deviates

from the analytical solution at low q values and at the first minimum.
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Figure 1.6: Comparison of two models of scattered intensity for a hard-sphere sus-

pension, assuming Schulz size distribution of the particles. The input parameters

are identical: R = 100 nm, Z = 100, Φ = 0.3. The red solid line is the analytical

solution of equation 1.21 derived in [Griffith 1987]. The blue solid line is the inten-

sity calculated using equation 1.16, with the form and structure factors obtained

from equation 1.21.



Résumé du Chapitre 2

Ce chapitre donne une vue d’ensemble de la technique de spectroscopie de

corrélation de photons X (XPCS) l’outil expérimental principalement utilisé dans

cette thèse. La XPCS permet d’accéder aux propriétés dynamiques d’un système

désordonné, comme les suspensions collöıdales, en mesurant les fluctuations en in-

tensité d’une figure de diffusion de faisceau cohérent. L’utilisation du rayonnement

synchrotron, de forte intensité, donne accès à une gamme unique de vecteurs dif-

fusion (pour l’échelle des longueurs) et de fréquences (échelle des énergies). La

première partie du chapitre présente une discussion des propriétés de cohérence du

faisceau synchrotron de troisième génération. Les figures de diffraction aléatoires

(tavelures optiques, ou “speckle”), qui reflètent l’arrangement spatial des centres dif-

fuseurs, sont ensuite introduites. Quand les éléments diffusants sont en mouvement,

par exemple sous l’effet du mouvement brownien, les figures dues à la diffraction

cohérente fluctuent. Ces fluctuations peuvent être analysées quantitativement via

les fonctions de corrélation moyennées dans le temps. La fonction de corrélation

mesurée par XPCS donne accès à la fonction de diffusion intermédiaire, qui est

reliée au facteur de structure dynamique – une quantité accessible via théorie et

simulations. En illustration, le calcul de la fonction de diffusion intermédiaire pour

un ensemble dilué de sphères dures montre que le coefficient de diffusion de Stokes-

Einstein peut être obtenu par ajustement des courbes expérimentales. L’utilisation

d’un détecteur 2D permet de calculer la fonction de corrélation à deux temps, qui

peut être utilisée dans les études de dynamique hors équilibre. Le chapitre se clôt

sur une description du dispositif expérimental, des détecteurs et des méthodes de

calcul des fonctions de corrélation.
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X-ray Photon Correlation
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2.1 Introduction

X-ray Photon Correlation Spectroscopy is a scattering technique giving infor-

mation about the dynamic properties of a disordered system. It is equivalent to

Dynamic Light Scattering (DLS), which is a well established method performed with

visible light [Berne 2000]. Both require a coherent source of radiation – only then

the scattered light forms a random diffraction or speckle pattern in the far-field.

It means that the information on the temporal evolution of the scatterers can

be deduced from the study of temporal changes of the scattered intensity. This

principle is applied in DLS (also named Photon Correlation Spectroscopy (PCS)).

Using visible coherent light limits the available q range to values 1 smaller than

∼ 4× 10−3 Å−1. Shorter X-ray wavelength allows to extend this limit up to several

Å−1, with the additional advantage of negligible multiple scattering – the phe-

nomena common for visible light, where the photon scattered by one scatterer is

scattered again, multiple times, by other scatterers before reaching the detector.

This significantly complicates DLS measurements and data analysis because the in-

formation about the scattering vector is lost. Multiple scattering can be overcome in

1. The calculation of the maximum q assumes back-scattering geometry (2θ ≈ 180◦) and the

use of a blue laser with λ = 445 nm. It should be noted that when calculating the q value for

visible light, equation 1.1 has to be modified to include the refractive index n0 of the sample:

q = 4πn0/λ sin (θ). Taking the refractive index of water: n0 = 1.33 [Lide 2010], the maximum q

value is 3.76× 10−3 Å−1
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visible light regime, to a certain extent, with the use of two-color dynamic light scat-

tering (TCDLS) [Segrè 1995c] or Diffusing Wave Spectroscopy (DWS) [Pine 1988].

Both DLS and XPCS probe slow dynamics (ω = Dq2 < 106 Hz, with D being the

diffusion coefficient). Figure 2.1 presents an overview of the frequency-scattering

vector range accessible by these and other methods applied in the study of dynamics

in disordered systems [Leheny 2012].

Development of a PCS technique performed with X-rays has only been possible

since third generation synchrotrons have been built, providing enough coherent flux.

Figure 2.1: Presentation of the frequency-scattering vector space covered by differ-

ent techniques, reproduced from [Leheny 2012]. XPCS – X-ray Photon Correlation

Spectroscopy, PCS – Photon Correlation Spectroscopy (also named DLS – Dynamic

Light Scattering).

2.2 Coherent properties of Synchrotron X-rays

The electrons in a storage ring based facility radiate spontaneously and indepen-

dently. Consequently, only partial coherence may be attributed to the photon beam.

A quantitative description of the coherence properties of synchrotron light can be

given by providing the values of longitudinal and transverse coherence lengths.
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2.2.1 Coherence of an X-ray beam

An X-ray beam produced by an insertion device deviates from an ideal plane

wave in two aspects: it is not perfectly monochromatic and its propagation direction

is not perfectly well defined. In this case it is useful to define a length scale on which

the beam may be considered coherent [Als-Nielsen 2011].

Longitudinal coherence length, ξL takes into account the wavelength (energy)

distribution. It is schematically presented in the top part of figure 2.2, showing the

wavefronts of two plane waves, initially in phase in point P. Due to the wavelength

difference between the two waves (∆λ), phase difference will accumulate along the

propagation direction. The distance after which the two waves are out of phase

defines ξL. Consequently, when the distance from point P is equal to 2ξL, the two

waves are in phase again. Marking the number of periods occurring from in-phase

to in-phase as N :

2ξL = Nλ = (N + 1)(λ−∆λ) (2.1)

Looking at the second part of the above equation which implies that (N +

1)∆λ = λ, it can be written that N ≈ λ/∆λ, and equation 2.1 can be rearranged

to obtain the longitudinal coherence length as a function of the wavelength λ and

the bandwidth ∆λ:

ξL =
1

2

λ2

∆λ
(2.2)

Coherence loss due to beam divergence is depicted in figure 2.2 (b). The two

waves, A and B, have the same wavelength, but their directions of propagation

are different by an angle θ. Noting that the wavefronts coincide at point P, the

transverse coherence length ξT can be defined as the distance along the wavefront

of wave A after which it is out of phase with wave B. Again, after a distance of

2ξT , the two waves will be in phase. Assuming that the angle θ is small, it can

be written that 2ξT θ = λ. The factor responsible for beam divergence is the finite

source dimension, marked as D in figure 2.2 (b). By denoting the source-sample

distance as R, ξT can be written as a function of practical parameters:

ξT =
λ

2

R

D
(2.3)

The requirement for a photon beam to be spatially coherent can be written as:

ΣxΣ
′
xΣzΣ

′
z ≥

(

λ

4π

)

(2.4)

where Σ is the source size and Σ′ is the beam divergence. Typically, this is not ful-

filled for X-ray sources, but may be achieved by using collimating apertures, acting

as secondary sources of smaller size. The drawback is the photon flux reduction.

Using the above definitions, coherent sample illumination requirement is fulfilled

when the maximum path length difference (PLD) for waves scattered by the sample
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(a) Longitudinal coherence length, ξL
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(b) Transverse coherence length, ξT

P

A

R

θ

θ

D

B

λ

2ξT

Figure 2.2: Schematic representation of longitudinal and transverse coherence

lengths (ξL and ξT respectively). Adapted from [Als-Nielsen 2011]

is smaller or equal to ξL and the lateral size of the illuminated sample is comparable

to ξT [Grübel 2004]. In transmission geometry, the maximum path length difference

is:

PLD ≈ 2W sin2 (θ) +D sin (2θ) (2.5)

for sample of thickness W , a beam of size D and a scattering angle θ. Knowing

the sample thickness and the beam size, equation 2.5 can be used to determine

the maximum angle θmax, thus the maximum scattering vector value for which the

scattering is still coherent: qmax = (4π/λ) sin (θmax).

Another important parameter for a scattering experiment is the number of pho-

tons in the coherence volume. It can be estimated using a quantity commonly

applied to compare the quality of different X-ray beams, called the brilliance B. It

takes into account not only the number of photons emitted per second, but also the

collimation of the beam and its monochromaticity. It is defined as:

B =
Photons/sec

(mrad)2(As)(0.1%BW)
(2.6)
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where As is the source area in mm2. Different X-ray sources produce different

spectra – they may be smooth or have peaks at certain energies. Which range of

photon energies is present in the measured intensity is an important aspect when

a comparison is to be made between the sources. That is why the photon energy

range is defined in equation 2.6 as a fixed relative energy bandwidth (BW = ∆λ/λ),

chosen to be 0.1%.

The coherence area Ac is defined by the horizontal and vertical transverse co-

herence lengths, ξhT and ξvT respectively, calculated using equation 2.3 and assuming

an elliptical beam cross section:

Ac = πξhT ξ
v
T =

π(λR)2

4DhDv
. (2.7)

Here Dh and Dv denote the source size in horizontal and vertical direction, respec-

tively. Analogically, the coherence volume can be defined as Vc = ξLAc. The average

number of photons ∆c in Vc can now be expressed by the brilliance, coherence time

τc = ξL/c, the solid angle δΩT = Ac/L
2 and source area As [Lengeler 2001]:

∆c = B · τc · δΩT · BW ·As = B
λ3

πc
, (2.8)

where c is the speed of light. The proportionality of ∆c to λ3 explains the difficulty

of performing a coherent X-ray experiment. The short wavelength (λ ≈ 1 Å)

needs to be compensated by high brightness in order to have enough coherent

flux. For this reason XPCS became feasible only since third generation synchrotron

sources have been available, with undulators giving a brilliance of the order of

1020photons/s/mm2/mrad2/0.1%BW.

2.3 Coherent illumination of disordered systems

Scattering of light results in a diffraction pattern. The use of coherent radiation

can provide additional information due to the resulting constructive or destructive

interference. As an illustration, a pinhole diffraction experiment is considered.

In the far field (Fraunhofer) approximation, the diffraction pattern can be fully

described by the Fourier power spectrum of the distribution function describing

the aperture [Goodman 2005]. Taking a circular pinhole, such as the one shown in

figure 2.3 a, a diffraction (or scattering) experiment can be simulated by calculating

its Fourier transform. The logarithm of the squared magnitude of the Fourier

transform of image 2.3 a is presented in figure 2.3 b. The concentric rings contain

information about the structure of the diffracting (scattering) object - the circular

pinhole. When the single object is replaced by many, randomly placed ones (figure

2.3 c), individual diffraction patterns interfere with each other, also in a random

way, leading to the so called speckle pattern (seen as grainy noise on top of the

concentric rings – figure 2.3 d). In addition to the information about the shape, it

also encodes the spatial arrangement of the diffracting objects. This can be shown
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by changing the position of just a single “particle”, as marked by the arrow in figure

2.3 c. The resulting speckle pattern (figure 2.3 e) also changes. To better visualize

the change, figure 2.3 f shows the intensity values along the diagonal cross sections

of panels d (green) and e (red), plotted over the azimuthally averaged radial profile

of the figure in panel e (blue).

In a real experiment, when all particles are moving, a point detector employed

to measure the scattered intensity in a fixed position in space would register a

fluctuating signal. This signal can be analysed with the use of correlation functions.
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Figure 2.3: Logarithm of the magnitude of the Fourier transform of a single circle

image presented in panel (a) is shown in panel (b). The characteristic concentric

rings contain the information about the shape of the “scattering” object. Due to

coherence, the intensity scattered from multiple, randomly placed identical objects

(panel (c)) produces a random diffraction pattern – the speckle pattern, shown in

panel (d). A displacement of a single “particle”, marked by the gray arrow in panel

(c), significantly changes the speckle arrangement, as can be seen in the diagonal

cross sections presented in panel (f).
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2.3.1 Correlation functions

Quantitative analysis of speckles [Grübel 2008] is done by calculating time-

averaged temporal intensity autocorrelation functions g2(~q, t):

g2(~q, t) =
〈I(~q, τ)I(~q, τ + t)〉

〈I(~q)〉2 . (2.9)

Here, I(~q, τ) denotes the scattered intensity measured at wave vector ~q and time

τ . Since intensity is probed with time interval ∆t (see figure 2.4), calculation is

performed by choosing a point in time τ0 to serve as origin. I(~q, τ0) is multiplied by

I(~q, τ1), where τ1 = τ0+∆t, and normalized to the time-averaged intensity 〈I(~q)〉2.
This calculation is averaged for every possible time origin, averaging being indicated

by angular brackets in equation 2.9. Subsequent points of the correlation function

are calculated by varying the delay time t = n∆t. This procedure assumes that
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Figure 2.4: A schematic representation of the temporal averaging performed during

correlation function calculation using equation 2.9

the value of g2(~q, t) is independent of the sample age, which is valid only when the

sample is ergodic, that is when time averages are equivalent to ensemble averages.

The experimentally accessible correlation function can be related to a theoret-

ically accessible quantity if the scattering contains a large number of independent

scatterers which undergo thermally excited motion in equilibrium. In this case the

central limit theorem implies that the fluctuations in the coherent scattering in-

tensity follow a Gaussian distribution and g2(~q, t) fully describes the correlation

spectrum [Sutton 2002]. The connection with the normalized intermediate scatter-
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ing function (ISF) g1(~q, t) is then provided by the Siegert relation:

g2(~q, t) = 1 + β(~q)|g1(~q, t)|2, (2.10)

where g1(~q, t) is a ratio of the dynamic structure factor S(~q, t) and the static struc-

ture factor S(~q, 0):

g1(~q, t) =
S(~q, t)

S(~q, 0)
(2.11)

and

S(~q, t) =
1

N [b2(~q)]

N
∑

n=1

N
∑

m=1

〈bn(~q)bm(~q) · exp [i~q[~rn(0)− ~rm(t)]]〉 (2.12)

for N scatterers with b2(~q) being the square of the scattering amplitude averaged

over the size distribution of the scatterers, and ~rn(t) – the position of scatterer n

at time t. In equation 2.12 the angular brackets denote ensemble averages over

the scattering volume, which for stationary dynamics are equivalent to the time

averages performed in equation 2.9.

Parameter β(~q) in equation 2.10 denotes the speckle pattern contrast which can

be related to the ratio of the coherence volume Vc and the illuminated sample volume

Vs. Being close to 1 for visible laser light, the contrast takes a value 0 < β < 1 for

partially coherent X-ray beam.

A simple example of dilute, monodisperse, spherical particles undergoing Brow-

nian motion [Berne 2000, Pusey 1991] will now be considered as an illustration. It

can be shown that when the positions of different molecules are statistically in-

dependent, due to lack of interactions, the cross terms (n 6= m) in equation 2.12

average to zero, and S(~q, 0) = 1. The displacement ~rn(0)−~rn(t) of a free Brownian

particle is a Gaussian variable. Its mean square value is given by [Pusey 1991]

〈[~rn(0)− ~rn(t)]
2〉 = 6D0,nt (2.13)

with D0,n being the free particle diffusion coefficient of a particle with radius Rn,

known from the Stokes-Einstein relation [Einstein 1905]:

D0,n =
kBT

6πη0Rn
, (2.14)

where kB is the Boltzman constant, T – temperature and η0 – shear viscosity of

the surrounding medium. Then equation 2.12 reduces to:

S(~q, t) =
1

N [b2(~q)]

N
∑

n=1

b2n(~q) · exp
[

−D0,nq
2t
]

(2.15)

A short-time expansion of 2.15 leads to [Pusey 1991]:

S(~q, t) = 1− 〈D0〉q2t+ . . . (2.16)
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where

〈D0〉 =
N
∑

n=1

b2n(~q)D0,n (2.17)

is the diffusion coefficient averaged over the distribution of particle sizes. For

monodisperse, non-interacting particles the equation 2.15 reduces to:

S(~q, t) = exp [−D0q
2t] = g1(~q, t) (2.18)

An example of a correlation function measured for a single value of the scatter-

ing vector on a sample of dilute spherical silica particles, suspended in propylene

glycol, is shown in figure 2.5. The data points are fitted with an exponential decay,

following equations 2.18 and 2.10:

g2(~q, t) = 1 + β exp [−2D0q
2t] (2.19)
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Figure 2.5: An example of a measured correlation function (circles) fitted with a

simple exponential decay – equation 2.19 (red solid line). The contrast β determines

the value of the initial plateau from which g2 starts to decay. Correlation time

tc = 1/2D0q
2 marks the point where g2(tc) = 1 + β/e.

2.3.2 Two time correlation functions

When the measured system is non-ergodic, the time averages employed in calcu-

lation of g2(~q, t) are no longer justified. They should be replaced by direct ensemble

averaging. One of possible experimental realizations is to use an area detector to

record multiple speckles at each point in time [Madsen 2010, Sutton 2003].

To follow the age-dependence of the sample dynamics a two-time correlation

function can be calculated:

G(q, t1, t2) =
〈I(~q, t1)I(~q, t2)〉Φ

〈I(q, t1)〉Φ〈I(q, t2)〉Φ
. (2.20)
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The subscript Φ in the above equation indicates averaging over the ensemble of

pixels which correspond to a range of wave vectors |~q| = q + ∆q for which the

variations of the correlations can be neglected. This method exploits the symmetries

of the scattering pattern, such as the azimuthal symmetry of isotropic scattering.

If the time averaging is valid, the regular correlation functions g2(q, t) can be

retrieved by averaging G(q, t1, t2) at a fixed delay time t = t2 − t1:

g2(q, t) = 〈G(q, t1, td)〉td . (2.21)

This procedure is illustrated in figure 2.6. The left panel shows a typical represen-

tation of a stationary two time correlation function, with the color-encoded value

of G(q, t1, t2), increasing from blue to red. The shaded regions, numbered from 1

to 4, indicate where g2(q, t) was calculated using equation 2.21. The average over

td = (t1 + t2)/2 at a fixed delay time t = t2 − t1 means averaging along the line

parallel to the main diagonal (t1 = t2), at a distance t from the diagonal. The cal-

culated g2(q, t) curves are shown in the upper right panel. All of them fall on top

of each other, indicating that the dynamics does not evolve during the experiment.

Even for non-equilibrium systems examples can be found where the dynamics

evolves slowly compared to the measurement time and the time averages involved

in the g2(q, t) calculation are not obviously problematic. Nevertheless, temporal

variations of the correlations deduced from G(q, t1, t2) can contain important in-

formation, not accessible for time-averaged correlation functions. For example, in

the case of equilibrium and diffusive motion, the values of G(q, t1, t) at different

t1 follow a Gaussian probability distribution. Its width is related to the intrinsic

statistical noise of the measurement. The time-averaged g2(q, t) contains all the

dynamic information of such a system. If the fluctuations in G(q, t1, t) are not

Gaussian this may indicate non-equilibrium dynamics or collective motion. This

information would be lost by time averaging [Madsen 2010].

A quantitative measure of the two time correlation function fluctuations can be

obtained by calculating the normalized variance [Duri 2006]:

χ(q, t) =
〈G2(q, t1, t)〉td − 〈G(q, t1, t)〉2td

[g2(q, 0)− 1]2
. (2.22)

As in equation 2.21, the averages 〈. . .〉td are calculated along lines parallel to the

mean diagonal at a distance given by t. The value of χ(q, t) is equal to zero in the

case of equilibrium dynamics, as shown in the lower right panel of figure 2.6.
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Figure 2.6: A stationary two-time correlation function (left panel). The shaded

regions have been used to calculate time-averaged correlation functions using equa-

tion 2.21, which are presented in the upper right panel. The normalized variance

χ(t) = 0, presented in the lower right panel (equation 2.22), indicates Gaussian

statistics of the intensity fluctuations.

The variance of G(q, t1, t) is similar to the dynamical four-point susceptibility

χ4, which can be used to characterize spatial heterogeneities in glassy materials.

Although the two quantities measure different properties, since χ(q, t) is defined

in the time domain, they can be related by noting that an increasing length of

cooperative dynamics results in a decreasing number of dynamically independent

scattering sites, leading to an increase in temporal fluctuations (a peak in χ(q, t))

[Madsen 2010].

2.4 Experimental setup

A schematic representation of a coherent scattering beamline - the ID10A branch

of the Tröıka beamline at ESRF, is shown in figure 2.7. The source size is defined

by primary and secondary slits, placed 27 m and 33 m from the undulator source.

According to equation 2.3, reducing the effective source size increases transverse

coherence length ξT . A set of beryllium Compound Refractive Lenses (CRL), lo-

cated 34 m from the source is used to focus the beam at the sample (46 m). A

single-bounce Si crystal monochromator, placed 44.2 m downstream allows to tune

the longitudinal coherence length (see equation 2.2) by selecting a monochromatic

beam. The local optics, present in the experimental hutch, downstream of the

monochromator, include a Si mirror to suppress higher order reflections. A set

of highly polished high-precision slits with cylindrical edges, placed just upstream

of the sample, at 45.5 m, defines the final beam size. With the partially coherent
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beam, these slits produce a parasitic scattering pattern, which is reduced by placing

guard slits just a few centimetres before the sample.
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Figure 2.7: Schematic representation of the ID10A beamline layout with typical

element distances.

Angular size of an individual speckle ds is determined by the setup and can be

calculated from [Grübel 2008]:

ds ≈

√

(

λ

d

)2

+ (∆θ)2 (2.23)

with ∆θ being the effective angular source size. For optimal measurement condi-

tions, the detector size (pixel size in case of an area detector) should not be larger

than the speckle size.

2.4.1 Detectors and correlators

Intensity autocorrelation functions at a selected q value can be readily obtained

using a point detector (scintillation counter or avalanche photodiode) and a hard-

ware correlator. There are several factors which determine the fastest time scales

accessible for XPCS. One of them is the count rate – approximately one photon

per second should be counted, thus a measurement of 100 Hz dynamics requires at

least 100 Hz count rate. Another limiting factor is the detector’s dead time. With

avalanche photodiodes, having a dead time in the order of 1 ns or less, the limits of

the correlator electronics may be reached, or the time structure of the synchrotron

storage ring starts to be visible in the measured correlation functions [Grübel 2008].

When the measured dynamics is slow enough a 2D detector can be used

to collect a series of scattering patterns which allow for a multispeckle analysis

[Lumma 2000b]. In this study the MAXIPIX pixelated detector [Ponchut 2011]

has been used. It consists of a single MEDIPIX-2 photon-counting chip comprising

256 × 256 pixels, each with an area of 55 × 55 µm2. Maximum acquisition rate
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is 1 kHz. Each pixel is an independent scintillation counter with properly defined

detection limits and gain, therefore no dark current can be observed.

In the case of isotropic scattering pattern, a correlation function calculated for

a single pixel can be averaged with the ones calculated for pixels corresponding

to the same |~q| (the ring depicted in figure 2.8). In this work the analysis was

performed using a program developed in Python programming language by Chiara

Caronna and Yuriy Chushkin. The code is based on the multi-tau algorithm for

calculating correlation functions, described in details e.g. in [Cipelletti 1999]. In

this algorithm the spacing of the correlator channels is quasi-logarithmic, which

allows to probe several decades in delay times with a limited number of channels.

The basic principle is to implement a set of linear correlators, each with a small

number of channels (typically 16), evenly spaced in time. The delay time, as well

as the sampling time, doubles from one correlator to the next. The final correlation

function is obtained by merging the output of all linear correlators.

Figure 2.8: Speckle pattern registered with a 2D detector. Since the scattering is

isotropic, the correlation function calculated for a single pixel, corresponding to a

single ~q, can be ensemble averaged with correlation functions calculated for other

pixels corresponding to the same magnitude of the scattering vector |~q|.

Despite requiring more elaborate and time consuming data processing, the use of

an area detector has several important advantages over the point detector. Firstly,
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the correlation functions for multiple q values are measured at the same time. This

gives a set of correlation functions measured at the same sample age – an important

factor when the dynamics evolves in time.

Secondly, the pixel-averaging (see the numerator of equation 2.24) performed

before normalization (denominator in equation 2.24) is equivalent to ensemble av-

erage. This is very important when non-ergodic samples are studied, as shown e.g.

in [Pusey 1989].

Thirdly, fully symmetric normalization is applied, described as:

g2(~q, t) =
〈〈Ip(~q, τ)Ip(~q, τ + t)〉Φ〉τ

〈〈Ip(~q, τ)〉Φ〉0≤τ≤(τr−t)〈〈Ip(~q, τ)〉Φ〉t≤τ≤τr

, (2.24)

where τr is the duration of the measurement, 〈. . .〉Φ marks averaging over pixels,

and 〈. . .〉t1≤t≤t2 denotes the time averaging from t1 to t2, with starting time t = 0. It

reduces the sensitivity to drifts and instabilities of the X-ray beam, by averaging the

values of the mean intensity (denominator in equation 2.24) over the same periods

of time during which the data used to calculate the numerator of equation 2.24 are

accumulated.

Finally, a multi-speckle scattering pattern can be used to perform analysis of

anisotropic dynamics, by choosing the pixels corresponding to a specific direction of

~q (see figure 2.9). With a point detector, this would require repeating the measure-

ment, while a series of 2D data allows to obtain correlation functions for different

orientations of ~q by masking different pixels.
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Figure 2.9: Having a data series recorded with a 2D detector facilitates the analysis

of anisotropic dynamics. Pixels to calculate the correlation function can be chosen

corresponding to a given direction of ~q. Correlation functions corresponding to

different orientations of ~q can be obtained from a single data set.



Résumé du Chapitre 3

Le système étudié dans cette thèse est une suspension collöıdale modèle de

sphères dures. C’est un des systèmes les plus simples et les plus largement étudiés,

et pourtant il n’est pas encore totalement compris. Le chapitre donne une in-

troduction générale au sujet des suspensions collöıdales, en s’intéressant partic-

ulièrement aux particules de type sphères dures. Ces particules nécessitent d’être

stabilisées afin de contrer les forces de Van der Waals attractives, qui ne sont pas

négligeables aux échelles collöıdales. Les principes de base des stabilisations stérique

et électrostatique sont donc introduits. La deuxième partie du chapitre décrit les

détails de la préparation et de la caractérisation des échantillons pour les deux

systèmes utilisés: sphères de silice en suspension dans le propylène glycol, et par-

ticules de poly(méthyl méthacrylate) (PMMA) dans la décaline. Les particules

de silice ont été étudiées en suspension diluée, où les particules peuvent être con-

sidérées comme diffusant librement. Les suspensions de PMMA ont été préparées

à haute fraction volumique par centrifugation et aspiration de la quantité requise

de surnageant. Le chapitre finit sur une description des propriétés dynamiques des

suspensions très concentrées. Plusieurs échelles de temps caractéristiques peuvent

être distinguées, qui sont discutées.
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3.1 Introduction to colloids

Colloidal suspension is a very general term, applied to a broad range of systems

present in every-day life, like smoke, fog, printing ink, paints, milk, mayonnaise,

insulating foam, . . . The common feature of these different substances is that all of

them consist of at least two components, A and B, which do not form a mixture on

molecular level. In other words, substance A is insoluble in substance B. Instead,

A is broken down into small particles uniformly distributed in B. Substance A is

called the disperse phase, and substance B – dispersion medium. Both of them may

be either solids, liquids or gases.

The size range of the disperse phase is not strictly defined. Usually, the lower

limit is given as around 1 nm radius, with the justification that smaller particles

would be indistinguishable from true solutions. The arbitrary upper limit is typi-

cally set to 1 µm, with a remark that there is no clear difference in the behavior of

somewhat larger particles, often present in different systems [Hunter 1990].

Ubiquitous in every-day life, colloids play also a great role in fundamental sci-

ence [Pusey 1991]. Availability of synthetic model systems composed of spherical

particles (e.g. [Antl 1986]) enabled experimental studies which can be compared to

theoretical and simulation results. A suspension of nearly identical colloidal parti-

cles can be often treated with the formalism derived for atomic systems, as their

thermodynamic properties are almost the same [Onsager 1933]. Colloids, regarded

as an assembly of “super-atoms” are very attractive to study phenomena like phase



3.1. Introduction to colloids 31

transitions [Löwen 1994]. Due to their mesoscopic length scale they are simpler to

approach with experimental techniques.

Because of the attractive van der Waals forces, acting between any two bodies of

matter, a suspension of particles would inevitably aggregate without an additional

protection. Two commonly used approaches include charge and steric stabilization.

3.1.1 Colloidal stability

The description of inter-particle interactions can be obtained with the use of a

potential of mean force U [~rj ], depending on the particle positions ~rj . It is assumed

to be a sum of pair potentials V (~rj − ~rk). For spherical particles it can be taken to

be spherically symmetrical, and expressed as:

U [~rj ] =
∑

j>k

|~rj − ~rk|. (3.1)

This description implies that the interaction between a pair of particles, j and k, is

not affected by the presence of other particles, which is a good approximation in case

of short-range interactions. With long-range forces, like the screened Coulombic

interaction of charged particles discussed later in this paragraph, the presence of a

third particle will affect the pair interactions. Even in this case it can be assumed

that an effective pair potential can be defined.

The first component of the interaction is the attractive van der Waals, or

London-van der Waals force, for particles of radius R described by equation:

VA(r) = −A

6

[

2R2

r2 − 4R2
+
2R2

r2
+ ln

(

1− 4R2

r2

)]

(3.2)

where r is the centre-to-centre separation and A is the Hamaker constant, depending

on material properties of both the particles and the suspending medium. In the

limit of large distances (r → ∞), equation 3.2 leads to a VA(r) ∝ r−6 behaviour:

lim
r→∞

−16
9
A

[

R

r

]6

, (3.3)

similar to the long range limit of the Lennard-Jones potential, describing the at-

traction between two atoms. The small distance limit (r → 2R - particles are close

to touching) of the form:

lim
r→2R

− A

12

R

r − 2R
(3.4)

is a deep attractive potential, theoretically infinite when r = 2R, in practice limited

by the repulsion of overlapping electron clouds and solvation forces, associated with

the finite size of the suspending liquid molecules [Pusey 1991].

One way of preventing particle aggregation due to the van der Waals forces is

by introducing charges. Charged colloidal particles can be described as macroions.

Their dispersion in a polar liquid, like water, will cause partial dissociation of the

ionisable surface groups. The acquired particle charge, typically of the order 102 –
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105 elementary charges e, leads to formation of an electrical double layer surround-

ing the particle. It is kept by the Coulombic forces acting on the counterions, not

allowing them to completely diffuse from the particle. The effective pair interaction

of charged macroions can be approximately described by the screened Coulombic

(Yukawa) potential:

VC(r) =

{

∞ r < 2R
q2e
εr exp (−κer) r > 2R

(3.5)

Here, qe is the effective particle charge, κe an effective screening parameter, and ε

– the dielectric constant of the suspending liquid. The complete pair potential of

charged particles is a sum of the van der Waals attraction (equation 3.2) and the

Coulombic repulsion (equation 3.5). Its exact form depends on particle concentra-

tion and temperature via the parameter A, κe and ε.

Another method of providing colloidal stability is to coat the particles with a

layer of polymer, which can be either physically adsorbed to the surface or chem-

ically bonded. This is called steric stabilization. The general principle can be ex-

plained by considering a close approach of such core-shell particles. The compression

of the interpenetrating polymer layer will cause a strong repulsion overcoming the

van der Waals attraction. At slightly larger distances, where the polymers are no

longer compressed but the layers still overlap, the specific polymer-polymer inter-

actions become important. Their character depends on the temperature-dependent

degree of solvency of the suspending liquid for the polymer. In good solvents,

the polymer-solvent contacts are energetically favoured over polymer-polymer and

solvent-solvent contacts. This results in a repulsive interaction between the polymer

chains and expansion of the random coil polymers. On the other hand, poor solvents

are defined as the ones in which the polymer-polymer contacts are favoured, leading

to attractive potential, association of the polymer molecules and contracted polymer

coils. For a given polymer-solvent pair, the so-called θ-temperature can be found,

at which there are no interactions between the polymers [Pusey 1991, Hunter 1989].

Steric stabilization offers several advantages over electrostatic. First of all,

charge stabilization is very sensitive to the presence and concentration of electrolytes

in the dispersion, while the steric stabilizing layer is weakly influenced by this factor.

Secondly, coatings can be found which will provide stability in both aqueous and

non-aqueous media. Charge stabilization is not as effective in non-polar liquids as it

is in polar ones. Third, the two methods also differ in effectiveness at high volume

fractions, with steric stabilization being superior in this aspect. Another advantage

is that dispersions stabilized sterically usually have a good freeze–thaw stability, as

well as reversible flocculation, which is less common with electrostatically stabilized

suspensions. [Hunter 1989].

3.1.2 Phase diagram of hard-sphere colloids

As in the case of molecular systems, also for colloids a phase diagram can be

found for a given interaction potential. For the simplest hard-sphere interaction the
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Figure 3.1: A schematic representation of the hard-sphere phase diagram (courtesy

of Dr Andrei Fluerasu).

phase diagram is governed by a single parameter – the particle volume fraction Φ,

which is defined as the ratio between the volume occupied by the total number of

particles in the sample N and the sample volume V :

Φ =
4

3
πR3N

V
. (3.6)

The phase diagram is schematically presented in figure 3.1. Upon increasing Φ the

“hard-sphere fluid” undergoes a freezing transition at ΦF = 0.494. A narrow region

of fluid-crystal coexistence is identified between 0.494 < Φ < 0.545. Above the

melting point ΦM = 0.545 the equilibrium state is reached in face centred cubic

(FCC) structure. The highest possible crystal packing is reached at Φ = 0.74. Fast

enough compression may overcome crystallization, leading to a “supercooled” liquid

state above ΦF , which finally leads to a solid glass state. The glass transition has

been identified from computer simulation studies at Φg ≈ 0.58 [Woodcock 1981].

The highest concentration available for an amorphous hard-sphere system is the

random close-packing (RCP) ΦR ≈ 0.64 [Pusey 1991].

Pusey and van Megen [Pusey 1986] have demonstrated that a model system

of sterically stabilized poly(methyl methacrylate) (PMMA) particles suspended in

an index matching mixture of decalin and carbon disulphide follows very well the

hard-sphere phase diagram sketched above.

3.2 The samples

There are several commonly encountered model colloidal suspensions of spherical

particles. They differ in the particle composition, the suspending medium and inter-

particle potential. A broad overview is given in e.g. [Pusey 1991]. This section gives

the details of two systems used in this study: silica spheres suspended in propylene

glycol (PG) and PMMA particles suspended in decalin.
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3.2.1 Silica spheres

The sample used for studies at low volume fractions under flow was prepared

from a dispersion of silica spheres in deionized water purchased from Thermo Sci-

entific. The particles are sold as size standards. Their basic physical properties are

presented in table 3.1. Silica spheres are charge-stabilized by a surface layer of hy-

droxyl groups (Si–O–H), which dissociate in water leaving the particles negatively

charged:

SiOH→ SiO− +H+ (3.7)

Table 3.1: Characteristics of the silica spheres in water according to the manufac-

turer’s documents.

Parameter Value

Diameter 0.49 µm ± 0.02 µm

Density 1.83 g/cm3

Vol. frac. 0.02

These relatively large particles were chosen to obtain enough scattered intensity

even from a suspension at volume fraction of about 0.01. The aim of suspending

liquid exchange, from water to PG, was to slow down particle sedimentation, thanks

to approximately 50 times higher viscosity of PG at room temperature.

The solvent exchange procedure included two steps. First, water was exchanged

to methanol. In the second step methanol was exchanged to propylene glycol.

The first step was applied in order to facilitate the evaporation of residual liquid

from PG. Liquid exchange was done by centrifuging the desired volume of the

sample in a plastic vial for about 5 min. at 5000 rpm. After carefully removing

the supernatant, a volume of the target liquid was added. The particles were

redispersed with a vortex mixer. The step of exchange to methanol was repeated

10 times. The exchange to PG was performed only once to avoid the difficulties of

particle redispersion in the highly viscous medium. The amount of PG added was

calculated to give a suspension of about 0.01 volume fraction. In order to get rid of

the residual methanol and air bubbles, the sample was left for several hours under

vacuum in a dessicator.

Part of the silica samples used in this work was prepared by Chiara Caronna.

3.2.2 Polymethylmetacrylate particles in decalin

One of the systems most often used in the study of dynamics of colloidal sus-

pensions consists of PMMA particles, sterically stabilized by a thin layer of poly-12-

-hydroxystearic acid (PHSA), suspended in decahydronaphthalene (decalin). The

samples used in this work, purchased from Andrew Schofield 1, were synthesized

1. University of Edinburgh
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according to the procedure described in details in [Antl 1986].

This particular system is very well suited for dynamic light scattering experi-

ments due to the possibility of suppressing multiple scattering. Since visible light

scatters at the interfaces with different refractive index, the amount of multiple scat-

tering can be decreased by choosing a suspending liquid which has the refractive

index similar to the one of the suspended particles. A detailed study of the phase

diagram of a colloidal suspension of PMMA particles has been shown to follow that

of perfect hard spheres [Pusey 1986].

In order to determine the mass fraction of the stock suspension the following

procedure was applied. A sample of 2 ml was carefully weighed using a standard

laboratory electronic balance. This sample was then left to dry in a furnace at

80 ◦C for approximately 24 hours. After that the sample was kept under vacuum

in a dessicator for another 24 hours in order to get rid of possible traces of the

suspending liquid. The dried particles were weighed, giving the mass fraction by

calculating:

Cm =
mp

mp +ms
(3.8)

where mp is the mass of dry particles and ms is the solvent mass. The obtained

value was Cm = 0.348 ± 0.002 with the uncertainty calculated from the balance

precision.

To roughly estimate the stock solution volume fraction, the obtained mass

fraction was converted to Φ using a literature value of dry PMMA density:

dp = 1.188± 0.016 g/cm3 [Lide 2010]. The solvent density was measured at 20 ◦C

using a PAAR DMA 58 density meter, giving a value of ds = 0.880 ± 0.001 g/ml,

in perfect agreement with tabulated values. Calculation of the volume fraction:

Φ =
Vp

Vp + Vs
, (3.9)

where Vp and Vs are the volumes of the particles and the suspending liquid re-

spectively, was done by expressing the volumes in equation 3.9 by corresponding

densities and masses: V = m/d. Simple transformations using equations 3.8 and

3.9 then lead to the following expression:

Φ =
1

1 + dp/ds(1/Cm − 1)
= 0.28± 0.01. (3.10)

The uncertainty of Φ was calculated using error propagation, including the uncer-

tainty of Cm and dp, the latter estimated as the difference between the bulk PMMA

density used in this thesis and a measured value of particle density, reported in table

1 of reference [Bartlett 1992].

A higher estimate of Φ = 0.335 of the stock solution volume fraction was ob-

tained from fits of the SAXS curve measured at the ID02 beamline at ESRF (lower

panel of figure 3.2). The scattering intensity was fitted with the analytical expres-

sion for a polydisperse Percus-Yevick fluid, assuming Schulz distribution of particle

radii, as derived in [Griffith 1987] and described in more details in section 1.2.2 of
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this thesis. There are several factors which can contribute to this large discrep-

ancy. First of all, the particle density is usually lower than the dry PMMA density

assumed in the calculation using equation 3.10, because of possible mixing of the

stabilizing polymers with the particle core. Secondly, the particle size distribution

function may be different from the one assumed in the fitted model. This can also

influence the obtained value of Φ. Thirdly, a concentration gradient might have

been present in the sample used for SAXS measurement due to the density differ-

ence between the particles and decalin. In this case a measurement taken on the

bottom part of the capillary would lead to the value of Φ higher than that of the

stock suspension.

The uncertainty of the fitted value of Φ cannot be reasonably estimated using

the standard statistical approach because of the extremely small uncertainties of

the measured I(q) values – typically 0.1% of I(q). The disagreement between the

model curve and the data at high q (q > 0.08 nm−1), probably originating from the

different particle size distribution than the assumed in the model, makes the best

fit not satisfying in terms of the reduced χ2, calculated as:

χ2
red =

1

ν

N
∑

i=1

(Ii − Imi )
2

σ2
i

. (3.11)

Here ν is the number of degrees of freedom: ν = N−n−1, where N is the number of

data points and n is the number of fitted parameters, Imi denotes the fitted value of

intensity and σ2
i is the experimental uncertainty of the measured intensity Ii. A fit

is considered good when χ2
red ≈ 1, that is when the squared differences between the

data and the model are of the order of σ2
i . In the case of fits presented in figure 3.2,

the calculated χ2
red is of the order of 10

6, rendering the calculation of fit parameter

uncertainties meaningless. Following the discussion presented in [Poon 2012], the

practical uncertainty of any volume fraction estimate should be assumed & 0.03.

A SAXS measurement taken at the ID02 beamline on a sample prepared by

diluting the stock suspension 200 times was used as an “experimental form factor”

and to obtain the particle radius and polydispersity (see the upper panel of figure

3.2). In both fits of the stock and dilute sample the amplitude of high q oscillations is

smaller in the fitted curve than in the experimental data. One possible explanation

of this feature is that the real particle size distribution function is more skewed

towards larger sizes than the assumed Schulz distribution [Narayanan 2008].

Samples at higher volume fractions were prepared by first centrifuging a known

mass of the stock suspension at 5000 rpm for about 24 hours, until all the particles

were compacted on the bottom of the vial. The mass of solvent δm which was

extracted to obtain the desired final volume fraction Φf was calculated from the

following expression [Segrè 1995a]

Φf =
Φi

1 + δm/mT [(dp/ds − 1)Φi + 1]
. (3.12)

Here Φi is the stock suspension volume fraction, mT is the total mass of the

sample, dp – particle density and ds – solvent density. Because the above method
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Figure 3.2: Results of fits of the scattered intensity from PMMA particles: (a)

measurement taken on a sample diluted 200 times from the stock suspension; (b)

data from the stock suspension. The continuous red line is a fit of the analytical

expression derived in [Griffith 1987], describing the scattered intensity from a poly-

disperse Percus-Yevick fluid of hard spheres with radii distributed according to the

Schulz distribution.

of determining Φ requires the knowledge of particle density, which is difficult to

obtain with good precision, the volume fraction of the samples was again measured

by fitting SAXS data.

3.3 Dynamics of hard-sphere colloids

The large difference in size between the suspending liquid molecules and colloidal

particles allows to apply a coarse-grained description of the suspension’s dynam-

ics. Instead of using Newton’s laws of motion, describing the time evolution of
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individual molecular trajectories, or the Liouville equations, giving the phase-space

probability density time evolution, the effect of the suspending liquid molecules can

be averaged to random forces acting on the colloidal particles. Two equivalent ap-

proaches have been developed for this purpose. One of them is the Fokker-Planck

equation describing the probability density of the particles’ positions and velocities,

analogically to the Liouville equation. The analogue of Newton’s equations of mo-

tion is a set of Langevin equations. The large mass of particles makes their velocity

fluctuations occur on a time scale τB, over which their position changes very little

– a small fraction of their radii. This allows for further reduction of the description

to a configuration space containing explicitly only particle positions, leading the

Fokker-Planck equation to the many-particle diffusion Smoluchowski equation. In

the Langevin equations, the velocity integration leads to coupled position Langevin

equations. At this level of description it is possible to identify three factors which

influence the motion of colloidal particles: Brownian forces, resulting from multiple

collisions with the liquid molecules, leading to random particle displacements on

time scales ≫ τB; direct particle interactions, like collisions, and indirect hydrody-

namic interactions, mediated by the suspending medium. In practice, diluting the

suspension decreases the strength of hydrodynamic interactions. It is convenient

to consider separately the simpler case in which the hydrodynamic interactions can

be neglected – a dilute colloidal suspension, and the more complex system, e.g.

a suspension of hard spheres at high volume fractions, in which the interactions

mediated by the suspending liquid are important [Pusey 1991]. The connection be-

tween the correlation function measured using XPCS (or, more generally - photon

correlation spectroscopy) and the free diffusion coefficient characterizing Brownian

dynamics of a dilute colloidal suspension of hard spheres has been discussed in the

example presented in section 2.3.1. Here an introduction is given to the dynamics

at high volume fractions.

3.3.1 Relevant time scales

Dynamics of colloidal suspensions at high volume fractions is a very complex

problem, even in the simple case of hard-sphere like particles. All three factors

influencing the particle movement – Brownian forces, particle collisions and hydro-

dynamic interactions, must be taken into account. A characteristic time scale can

be related to each of these contributions.

The Brownian relaxation time, τB, can be calculated given the particle mass m

and its friction coefficient in the suspending liquid f = 6πη0R:

τB =
m

6πη0R
(3.13)

with η0 denoting the dynamic viscosity of the suspending liquid. For times τ ≫ τB
the particle movement can be considered diffusive, while at shorter times, τ ≪ τB,

it evolves from ballistic to diffusive. Considering the mean-square displacement of

a free Brownian particle:

〈∆r2(t)〉 = 6D0t (3.14)
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it can be calculated that the typical particle displacement in time of the order of τB is

much smaller than its radius. A more detailed discussion presented in [Pusey 1991]

shows that direct particle interactions require much larger movements. The related

structural relaxation time τR can be evaluated from:

τR =
R2

D0
. (3.15)

The values of τB and τR calculated for the PMMA suspension in decalin used in

this thesis are presented in table 3.2.

The time relevant for hydrodynamic interactions τH can be estimated as the

time taken by a viscous shear wave to propagate between two particles:

τH ≈ (ρ−1/3)2
µ0

η0
(3.16)

with ρ being the particle number density and µ0 the suspending medium density.

Knowing that the mean interparticle spacing in a moderately concentrated sus-

pension is of the order of particle radius, τH is similar to τB. Since the time scales

accessible for XPCS (or DLS) in the systems considered in this thesis are well above

τB, the hydrodynamic interactions are practically instantaneous.

Table 3.2: Characteristic time scales for PMMA particles – τB, calculated us-

ing equation 3.13 and τR with equation 3.15. The following values were taken:

1.188 g/cm3 for PMMA density, η = 2.6 mPa · s, D0 = 8.5× 10−13 m2/s.

R [nm] τB [s] τR [s] τR/τB

103 1.08× 10−9 1.2× 10−2 1.16× 107

A clear separation between τB and τR (see: the value of τR/τB in table 3.2)

allows to define short- and long-time dynamics limits. At short times, τB ≪ t < τR,

particle Brownian motion is influenced only by hydrodynamic interactions. In the

long-time limit, that is for times t > τR, both hydrodynamic and direct interactions

contribute. In the context of an experimentally accessible intermediate scattering

function, inclusion of particle interactions can be accounted for by a q and time

dependent diffusion coefficient, expressed by the derivative of g1(q, t):

∂g1(q, t)

∂t
= −D(q, t)q2g1(q, t). (3.17)

In analogy to the time scales, short- and long-time diffusion coefficients can be

defined, as:

DS(q) ≡ lim
τB≪t<τR

D(q, t) (3.18)

DL(q) ≡ lim
t>τR

D(q, t) (3.19)
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The above discussion can be concluded in a remark that the dynamics on different

time scales is based on different mechanisms. In the short-time limit the particles

move by a fraction of their radius and their configuration is not distorted. Long-time

dynamics includes significant configuration changes caused by multiple collisions

between the particles.

3.3.2 Short- and long-time diffusion

The short-time diffusion coefficient includes contributions from Brownian diffu-

sion and the solvent-mediated interactions, which can be expressed by the hydro-

dynamic function H(q):

DS(q) = D0
H(q)

S(q)
(3.20)

where S(q) is the static structure factor, indicating also the structural dependence

of DS(q). In the high dilution limit H(q) → 1 and S(q) → 1, leaving DS equal to

the free diffusion coefficient. At higher concentrations the hydrodynamic function

typically takes values H(q) < 1, leading to a slowing down of the diffusion. The the-

ory describing DS(q) including hydrodynamic interactions in a hard-sphere system

was developed by Beenakker and Mazur in [Beenakker 1983, Beenakker 1984]. Its

predictions were demonstrated to be in good agreement with DLS [Segrè 1995a]

and XPCS [Orsi 2012b] results up to particle volume fraction Φ ∼ 0.4. For

higher concentrations (up to Φ ∼ 0.494) the rescaled mode-coupling theory (MCT)

[Banchio 1999b] provides better predictions for the peak position of H(q) vs Φ, as

was demonstrated in a comparison of simulation and experimental data by Banchio

et al. [Banchio 2008], as well as in the XPCS study of Orsi et al. [Orsi 2012b].

Long-time behaviour is a more complex problem, its theoretical treat-

ment is less developed. Few approximative theoretical approaches exist, e.g.

[Medina-Noyola 1988, Tokuyama 1995]. A detailed discussion, presented e.g. in

[Pusey 1991, Zhang 2006], introduces the long-time diffusion coefficient related to

the memory function, indicating the dependence of ∂g1(q, t)/∂t also on the condi-

tion at time t′ ≤ t. Calculation of the memory function is not trivial and requires

approximations. It has been performed within the mode-coupling approximation

[Hess 1980, Hess 1983], which in principle does not include hydrodynamic interac-

tions. In the MCT the short-time relaxation is called the β relaxation and is related

to the particle motion within a cage formed by its neighbours. Caging implies that

the process is nonergodic. It is followed by the long-time, ergodicity-restoring α

relaxation, which diverges when glass transition is approached. The α process

is related to the breakdown of the cages leading to large-scale particle diffusion.

Particle caging has been directly observed in hard-sphere like suspensions using

optical video microscopy [Kasper 1998]. In its basic version, the MCT predicts a

glass transition of hard spheres at a volume fraction of Φ = 0.525, significantly

smaller than the experimentally observed value of Φ ≈ 0.58 [van Megen 1994]. A

phenomenological correction can be applied of rescaling the volume fraction as

Φ → Φ(Φg/0.525), with Φg determined so that the theory reproduces Brownian
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dynamics simulation results at high volume fractions, that is Φg = 0.62 – this

time a value larger than experimentally observed [Banchio 1999a]. The predic-

tions of MCT have been compared with experimental results (DLS) giving good

quantitative agreement at a large range of volume fractions and times probed

[van Megen 1994, Banchio 1999a, van Megen 2007b]. This, as well as the gen-

eral difficulty of accurate determination of a transition point from first principles

[Götze 1999], are good arguments which can justify the above described Φg scaling

procedure.



Résumé du Chapitre 4

Ce chapitre montre comment l’information à propos de la dynamique et du

profil de vitesse d’une suspension collöıdale diluée en écoulement peut être obtenue

via une étude par XPCS (résultats publiés dans [Fluerasu 2010]). L’expérience

rapportée ici est un développement de la méthode présentée dans [Fluerasu 2010,

Busch 2008]. Elle montre que dans certaines conditions, il est possible d’extraire

la composante diffusive de la dynamique des particule en supension dans un fluide

sous cisaillement. Le chapitre présente tout d’abord l’influence de l’écoulement sur

les signaux obtenus en XPCS. Les temps de corrélation mesurés dans un système

en écoulement ne dépendent pas seulement de l’amplitude du vecteur diffusion,

mais aussi de son orientation relative par rapport à la direction de l’écoulement.

Les mesures décrites ici ont été effectuées dans une cellule d’écoulement simple,

consistant en un canal cylindrique. Les faibles débits utilisés permettent d’obtenir

un écoulement laminaire. Une bonne séparation des échelles de temps concernant

l’advection et la diffusion a permis une mesure simultanée du coefficient de diffusion

de Stokes-Einstein et du temps de relaxation lié au cisaillement.
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This chapter presents how information about the dynamics and flow velocity

profile can be obtained from an XPCS measurement of a dilute colloidal suspension

under flow (results published in [Fluerasu 2010]).

The experiment reported here is a development of the method presented in

[Fluerasu 2008, Busch 2008]. It demonstrates that under certain conditions it is

possible to extract the diffusive component of the dynamics of particles suspended

in a fluid undergoing shear flow. XPCS is used to measure both the diffusive and

advective (flow induced) motion of the scatterers by taking the advantage of the

anisotropy present in the correlation functions.

The chapter begins with an explanation of flow influence on the XPCS mea-

surement. The correlation times measured in a flowing system depend not only on

the magnitude of the scattering vector q = |~q|, but also on the relative orientation
between the scattering vector and the flow direction.

4.1 XPCS under flow

Flow introduces two additional aspects to the movement of scatterers: relative

velocity difference between scatterers at different locations and their transit through

the scattering volume. Here the theory derived for visible light photon correlation

spectroscopy in laminar flow in [Fuller 1980] is presented. It has been successfully

applied to XPCS in [Busch 2008].

The following discussion is restricted to the simple case of non-interacting, spher-

ical particles. In this dilute regime the static structure factor S(q, 0) = 1 and the

cross terms in equation 2.12 (n 6= m) average to zero, simplifying the intermediate
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scattering function to:

g1(~q, t) ∝
N
∑

k=1

〈E∗
k(0)Ek(t) · exp

[

i~q[~r′k(0)− ~r′k(t)]
]

〉. (4.1)

Particle displacement, included in the phase factor of the above equation, can be

separated into terms describing diffusive and flow-related motion:

exp
[

i~q ·
(

~r′k(0)− ~r′k(t)
)]

=

exp [i~q · (~rk(0)− ~rk(t))] · exp (i~q · ~v0t) · exp (i~q · δ~vt). (4.2)

Here ~r′k(t) – the k th particle position at time t in the presence of flow is separated

into ~rk(t) – position due to diffusion only, flow displacement due to ~v0 – average

velocity throughout the sample and δ~v – the flow velocity difference of particle k

between positions ~rk(0) and ~rk(t).

This simple consideration shows that the intermediate scattering function de-

pends on three factors, characterized by the corresponding time scales: diffusive,

with τD = 1/Dq2, D being the diffusion coefficient; amplitude, measuring the scat-

tered intensity for each particle k, Ik = 〈E∗
k(0) ·Ek(t)〉, sensitive also to the transit

time τT of particles through the scattering volume τT = L/v0, where L is the length

scale characteristic for the scattering volume; and shear factor, with time scale τS ,

inversely proportional to the local flow velocity gradient γ̇. It can be shown that

[Fuller 1980]:

τS ∝ (qγ̇L cosϑ)−1. (4.3)

Here ϑ denotes the angle between the scattering vector ~q and the local velocity

vector ~v.

As derived in details in [Fuller 1980], assuming that the three time scales are

well separated, the ISF can be written in terms of independent contributions from

the relaxation mechanisms described above:

|g1(~q, t)| = |g1,D(~q, t)| · |g1,T (t)| · |g1,S(~q, t)|. (4.4)

The first factor, g1,D(~q, t), accounts for the thermally driven diffusion, g1,T (t) de-

scribes the transit time through the scattering volume and g1,S(~q, t) is related to

shear. Their exact form will depend on the type of flow. Choosing for example

a simple shear flow with a constant shear rate γ̇, it can be shown [Ackerson 1981]

that the diffusive part becomes anisotropic, with diffusion enhanced by the flow:

|g1,D(~q, t)|2 =
[

−2Dq2t

(

1−
q‖q⊥

q2
γ̇t+

1

3

q2‖

q2
(γ̇t)2

)]

, (4.5)

here q‖ and q⊥ denote the components of ~q parallel and perpendicular to the flow

velocity (see figure 4.1). It should be noted that by choosing the scattering geometry

so that ~q ⊥ ~v, the parallel component is equal to zero and equation 4.5 takes the
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2D detector
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sample

~v
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guard slit ~ki
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Figure 4.1: Schematic representation of an XPCS measurement under flow in SAXS

geometry. The flow velocity ~v is oriented vertically, as marked by the arrow on the

side of the sample cell. Direction of the scattering vector at which the measurement

is taken may be chosen to be parallel (q‖) or perpendicular (q⊥) to flow velocity

vector.

simple exponential decay form, identical to the case of non-interacting particles

undergoing Brownian motion without flow:

|g1,D(~q, t)|2 = exp
[

−2Dq2t
]

(4.6)

Flow related transit of scatterers through the scattering volume leads to a decor-

relation of the dynamic structure factor which can be characterized by a frequency

ftr ∝ v0/h. It has been shown ([Berne 2000]) that the contribution to the measured

correlation function can be understood as the effect of flowing scatterers scanning

the beam profile. In a typical XPCS experiment the beam is defined by rectangular

slits, therefore the incident beam intensity profile has the shape of a
(

sin (r)
r

)2
func-

tion (squared Fourier transform of a rectangle function). The usage of guard slits

aligned to suppress higher-order diffraction peaks allows to approximate the inten-

sity distribution at the sample as a Gaussian. This leads to the following simple

form of the transit time contribution to the correlation function:

|g1,T (t)|2 ∝ exp
[

−(ftrt)2
]

(4.7)

The above equation shows that this contribution does not depend on the scattering

vector ~q.

To understand the shear influence on the measured correlation functions it is

convenient to consider a pair of particles moving with different velocities due to
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presence of shear. Velocity difference δ~v will cause a Doppler shift in frequencies

of radiation scattered from these particles. The induced self-beat frequency will

be equal to ~q · δ~v. Calculating the contribution from all particles in the scattering

volume requires summing over all pairs of scatterers. Assuming small transverse

beam size, the scattering volume can be approximated by a line of length 2R, then

the shear contribution to g1(~q, t) is given by:

|g1,S(~q, t)|2 =
1

4R2

∫ R

−R

∫ R

−R
cos (~q · δ~v(r1, r2)t)dr1dr2 (4.8)

Analytical solution to the above integral has been performed for a uniform shear

rate [Narayanan 1997], giving:

|g1,S(~q, t)|2 =
sin (q‖v0t)

q‖v0t
(4.9)

A more complicated form of the solution has been found for the parabolic ve-

locity profile (Poiseuille flow in a cylindrical channel) [Busch 2008]:

|g1,S(~q, t)|2 =
π2

16q‖tv0

∣

∣

∣

∣

∣

erf

(
√

4iq‖tv0

π

)
∣

∣

∣

∣

∣

2

(4.10)

Another interesting flow geometry is the flow in a rectangular channel. In this case,

the velocity profile can be described by a series of sine functions [Spiga 1994]:

ux(y, z) =

∞
∑

n odd

∞
∑

m odd

unm sin
(

n
π

w
y
)

sin
(

m
π

h
z
)

(4.11)

with

unm =
16

π4

∆p

ηL

1

nm
(

n2

w2 +
m2

h2

) . (4.12)

Here w is the channel width, h – height and L – length, as depicted in figure

4.2. Calculation of the integrals in equation 4.8 for this profile can be performed

numerically. The result, compared to other velocity profiles, is presented in figure

4.3.

x

yz

h

L

w

Figure 4.2: Geometry of the rectangular channel.

Equations 4.9 and 4.10 allow to define a shear-induced frequency as:

ΓS = ~v0 · ~q. (4.13)
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Figure 4.3: Comparison of shear contributions to the intermediate scattering func-

tion for different flow velocity profiles, calculated for q = 2.4×10−3 Å−1. The curves

for simple shear (black) and parabolic profiles (red) where calculated analytically,

by solving equations 4.9 and 4.10, respectively. The g1,S for rectangular channel

velocity profile (blue) was calculated numerically. Corresponding velocity profiles

are presented in the inset.

In case of perfectly transversal scattering alignment, that is ~q ⊥ ~v, ΓS = 0, leaving

the measured correlation functions unaffected by shear. It is worth emphasizing that

the shear-related anisotropy of the coherent scattering pattern is related exclusively

to the dynamic part, that is – the speckles. Due to shear the speckle fluctuation

frequency increases when measured in ~q ‖ ~v. The static part, which can be retrieved
by averaging the measured I(~q, t) over time, remains isotropic.

4.2 Experimental setup

The flowcell used in this experiment was made out of a Kapton tube with inner

radius R = 0.66 mm and ≈ 100 µm thick walls. Sample flow was provided by a

syringe pump (Harvard Apparatus Inc.) with a Hamilton syringe, connected to

the flowcell via PEEKTMpolymer tubes, leak-tight fittings and adapters, purchased

from Upchurch Scientific.

Flow rates applied during the measurements were between Q = 0 and 80 µl/h.

These values can be translated into average flow velocities, v0 = Q/πR2, giving

0 < v0 < 16 µm/s. Reynold’s number calculated for the above parameters using
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Re = 2Rv0ρ/η, where ρ is the density and η the dynamic viscosity of PG, has a

value Re < 10−6. Under these conditions the flow in the tube can be considered

laminar, with the velocity profile described by a parabola:

v(r) = 2v0
R2 − r2

R2
. (4.14)

4.3 Results

4.3.1 Free diffusion coefficient measured under flow

The free diffusion coefficient D0 was determined by fitting the transverse flow

correlation functions to simple exponentials. The results are shown in figure 4.4.

In the low-flow limit D0 is, as expected, independent of both q and the flow rate.

At higher flow rates (Q > 40µl/h) the correlation functions (shown in the inset)

start deviating from single-exponential (straight lines in the lin-log representation)

and the fitted correlation times shift towards faster values due to the increasing

longitudinal components of the flow velocity. These components are present because

of the finite widths of the detector regions over which g2(q, t) are ensemble averaged.

The value obtained from the simple exponential fits for D0 is 2.25×106 Å2/s . The

viscosity was determined using the Einstein-Stokes relationship,

D0 =
kBT

6πηR
(4.15)

yielding η = 38±1 mPa s at room temperature – a value in fair agreement with the

tabulated one [Lide 2010] for PG, η = 40.4 ± 0.4 Pa s (at 25 ◦C). The difference

probably comes from a small amount of residual water present in the solvent.

4.3.2 Shear-induced relaxation time

The speckle contrast β and the baseline value g∞ of the measured correlation

functions were first obtained from fits with stretched exponentials following the

Kohlrausch-Williams-Watts (KWW) form:

β exp [(2Γt)γ ] + g∞. (4.16)

The γ parameter in this formula allows to stretch (or compress) the exponential

decay to fit the data well, although in this case it carries no physical meaning –

it is used simply as the initial step for further data analysis. Subsequently, the

normalized correlation functions gnorm2 = (g2 − g∞)/β were fitted using equation

4.4, with the value measured for D0 kept constant. Examples of fits for normalized

correlation functions measured in transverse flow (blue circles) and longitudinal

flow (red triangles) geometries, for a single value of the scattering wave vector

q = 2.8 × 10−3 Å−1 and a single position in the flowcell (at the center, x/R = 0)

at different flow rates Q = 20 − 80µl/h , are shown in figure 4.5. The position
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Figure 4.4: Free diffusion coefficient obtained from single exponential fits of the

transverse flow correlation functions shown in the inset for a single value of q =

2.5 × 10−3 Å−1. In the low-flow limit (< 40 µl/h ) the correlation times (τ) are

independent of the flow rate and τq2 are q-independent and equal to the inverse of

the free diffusion coefficient D0 ≈ 2.2× 106Å2/s.

dependence of the correlation functions for the same value of q, a single flow rate

Q = 40µl/h and the same scattering geometries is displayed in figure 4.6.

The fits show that the very simple model used here, assuming a parabolic-shaped

Poiseuille flow and hence an exact form for g2(~q, t), describes the experimental data

remarkably well. The most significant fitting parameter here is the shear-induced

relaxation rate, ΓS = ~q ·~v, where ~v is the maximum flow velocity along the direction

of the beam (y). Since this is obtained at different positions across the flow tube

(x), the fitted values also depend on x: ΓS(x) = q ·v(x). Here, we omit the vectorial
notation and the dot product because only values measured from longitudinal flow

fits are used. The x-dependence of the maximum flow velocity along the y-direction

in a Poiseuille-flow geometry is easily obtained from equation 4.14, and we obtain:

ΓS(x) ∝
qQ

πR2

(

1− x2

R2

)

. (4.17)

Fits with equation 4.17 for the shear-induced relaxation rates obtained from

the fits at different locations in the flow tube are shown in figure 4.7(a). The data

shown here were measured at four different flow rates and two different values of q.
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From equation 4.17 one can also see that a scaled relaxation rate

γS =
ΓS

qQ/πR2
∝ 1−

( x

R

)2
(4.18)

should follow a single, flow- and q-independent parabolic profile across the tube

(figure 4.7(b)).
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Figure 4.5: Normalized correlation functions and fits for q = 2.8 × 10−3Å−1 and

x/R = 0 (center of the flowcell) measured at different flow rates: Q = 0-80 µl/h

(a)-(e). Blue circles: transverse flow correlation functions, q ⊥ flow. Red triangles:

longitudinal flow, q ‖ flow.
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Figure 4.6: Normalized correlation functions and fits for q = 2.8 × 10−3Å−1 and

Q = 40µl/h measured at different locations across the flowcell x/R = 0-0.91 (a)-

-(e). Blue circles: transverse flow correlation functions, q ⊥ flow. Red triangles:

longitudinal flow, q ‖ flow.
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Figure 4.7: (a) Fitted shear-induced relaxation as a function of position (x/R) for

four different flow rates: 20 µl/h (squares), 40 µl/h (crosses), 60 µl/h (triangles)

and 80 µl/h (circles) - and two values of q: 1.6×10−3 Å−1 (blue) and 2.5×10−3 Å−1

(red). The solid lines show fits with a parabolic profile; the dashed lines (extension

to negative values of x) are guides to the eye. (b) Scaled relaxation rates (γs) for

the same values of the flow rate Q and wave vector q collapse on a single parabolic

profile across the tube.



Résumé du Chapitre 5

La dynamique des collöıdes à forte fraction volumique fait l’objet de recherches

poussées. L’intérêt n’est pas que fondamental: ce type de système est très présent

dans des applications industrielles.

Ce chapitre commence par un rappel des propriétés dynamiques des collöıdes

concentrés, suivi par une description des procédures d’acquisition et de traitement

de données. Les résultats expérimentaux sont ensuite discutés, en commençant par

la détermination de la fraction volumique qui se fait via des ajustements de profils

d’intensité radiale de systèmes modèles de sphères dures, moyennés axialement et

dans le temps.

Les fonctions de diffusion intermédiaires obtenues à partir de mesures de XPCS

effectuées sur plusieurs tavelures (“multi-speckles”) sont analysées dans les limites

des temps longs et des temps courts. Une procédure numérique est utilisée pour

déterminer la fin du comportement de diffusion aux temps courts. La compara-

ison de ce temps avec le temps moyen entre deux collisions de particules permet

de conclure que le comportement diffusif aux temps courts est perdu en quelques

collisions. L’analyse de la fonction hydrodynamique, à des fractions volumiques

plus faibles qui décrivent l’influence des interactions indirectes médiées par le liq-

uide environnant, indique également une influence non négligeable des interactions

directes entre particules même dans la limite des temps courts.

Une relation exponentielle entre l’inverse du coefficient de diffusion et la fraction

volumique a été mise en évidence pour Φ > 0.5. Cette relation est bien reproduite

avec la formule de Vogel-Fulcher-Tammann, ce qui laisse supposer qu’on a affaire

à un blocage cinétique (“jamming”) plutôt qu’à une transition vitreuse. Mais les

prédictions de la théorie du couplage de modes, qui correspondait bien aux résultats

expérimentaux pour les suspensions diluées, ne permet pas de rendre compte de la

dépendance en fraction volumique des coefficients de diffusion, ni pour les temps

longs ni pour les temps courts.

Nous avons néanmoins effectué un test sur le comportement d’échelle de la

fonction de diffusion intermédiaire. Il avait été précédemment montré que le tracé

de ln [g1(q, t)]/DS(q)q
2 en fonction du temps se réduit à une courbe mâıtresse pour

une large gamme de valeurs de q [Segrè 1996]. Les résultats présentés dans cette

thèse montrent que ceci n’est plus valable dans la gamme de fractions volumiques

étudiée (0.5 < Φ < 0.6).

Une étude plus détaillée des fonctions de corrélation mesurées sur l’échantillon

le plus concentré (Φ=0.597) révèle une décroissance plus rapide qu’exponentielle

dans le régime des temps longs, sans signe d’hétérogénéité dynamique. Cette obser-

vation elle aussi est cohérente avec un scénario de blocage cinétique pour expliquer

le ralentissement de la dynamique. Le processus de vieillissement est observé via

les fonctions de corrélation à deux temps. Une dynamique complexe, non station-

naire, est mise en évidence. Ce comportement n’est pas accessible aux fonctions de
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corrélation moyennées dans le temps qui sont couramment utilisées dans ce type

d’études. Une analyse qualitative des fonctions de corrélation à deux temps montre

que la dynamique est affectée à toutes les échelles de temps et de longueur par

des événements de type avalanche. Une analyse plus quantitative nécessite d’être

développée pour aller plus loin dans cette compréhension.
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5.1 Introduction

In colloidal suspensions at high volume fractions (close to Φ = 0.5) the static

structure factor shows a pronounced peak at 2π/q ≈ 2R, R being the particle

radius, which is explained as the effect of short-range ordering (formation of a cage)

of particles surrounding a chosen particle [Pusey 1997]. As previously discussed in

section 3.3, the dynamics is influenced by their interactions, both direct and solvent-

mediated hydrodynamic interactions (HI). Two experimentally relevant time scales

can be distinguished: the short-time diffusive limit for τB ≪ t < τR, and the

long-time limit for t > τR. At longer times than the Brownian relaxation time

τB (equation 3.13) a diffusive description of particle motion is justified. Also, the

motion of a particle suspended in a liquid induces a velocity field, which propagates

on time a scale τH ∼ τB and influences the motion of other particles. The structural

relaxation time τR (equation 3.15) is defined as the time needed for a free particle

to displace by a distance equal to its radius. At times longer than τR interparticle

collisions are considered significant, further complicating the dynamics [Pusey 1991,

Zhang 2006].

The slowing down of the diffusion due to HI is taken into account via the short-

time diffusion coefficient DS(q) < D0, which can be probed in a photon correlation

experiment by measuring the intermediate scattering function in the appropriate

time scale:

g1(q, t < τR) = exp [−DS(q)q
2t]. (5.1)
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The influence of HI is represented by the hydrodynamic function:

DS(q) = D0
H(q)

S(q)
. (5.2)

A comprehensive theory of short-time dynamics in concentrated suspensions of

hard spheres including hydrodynamic interactions was developed by Beenakker

and Mazur [Beenakker 1983, Beenakker 1984]. It has been demonstrated to

be in agreement with experimental results up to volume fractions Φ ∼ 0.4

[Segrè 1995a, Orsi 2012b]. At higher concentrations (up to the freezing transition

at Φ = 0.494) the rescaled MCT [Banchio 1999b] proved to represent the Φ depen-

dence of the H(q) peak value better, both for experimental and simulation results

[Banchio 2008, Orsi 2012b].

The long-time dynamics can be characterized by a second, slower, approximately

exponential decay:

g1(q, t) ∝ exp [−DL(q)q
2t], (5.3)

with the q-dependent long-time diffusion coefficient DL(q) < DS(q), characteriz-

ing the jumps between cages or the dissolution of cages which occur after large

structural rearrangements. The theory of dynamics at these time scales is more

complex, since it requires including direct particle interactions. Approximate treat-

ments were developed by Medina-Noyola [Medina-Noyola 1988] and Tokuyama and

Oppenheim [Tokuyama 1995].

By analogy to molecular systems with the same interaction potential, the dy-

namics of hard-sphere suspensions can be treated with the formalism of the mode-

coupling theory [Götze 1991] and the β and α relaxations, corresponding to short-

and long-time regimes, respectively. In this picture particle caging leads to a dy-

namic arrest (glass transition), characterized by the algebraic divergence of the

ergodicity restoring α relaxation time at the glass transition volume fraction Φg:

τα ∝ (Φg − Φ)−γ . (5.4)

Predictions of the MCT have been shown to reproduce well numerous experimen-

tal results [van Megen 1994, Fuchs 1999, Götze 1999]. Hydrodynamic interactions,

which are not taken into account in the basic version of the theory, can be included

by empirical scaling procedures [Banchio 1999a].

This chapter presents the results of dynamics measurements performed on sus-

pensions of PMMA particles, described in more details in section 3.2.2. The probed

volume fraction range is above the hard-sphere freezing point (Φ = 0.494). Col-

loidal crystal growth is suppressed within the experimentally relevant time due

to particle size polydispersity, allowing for unperturbed measurement of the sam-

ples in the “supercooled” fluid state. The use of multi-speckle XPCS technique

to probe the dynamic properties of the colloids allows to address several interest-

ing problems. Both structure and dynamics can be probed over a wide q range.

This is difficult to achieve with visible light scattering techniques, typically used

in such studies. The time range probed gives access to both short- and long-time
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dynamic regimes. The short-time limit allows to study the influence of hydrody-

namic interactions at volume fractions higher than previously reported (see e.g.

[Segrè 1995a, Phan 1996, Orsi 2012b]). Dynamics in the long-time limit which is

more challenging both from an experimental and a theoretical point of view, is also

interesting. The complexity of interparticle interactions limits any theoretical pre-

dictions beyond simple approximations. Examples of different experimental results

on similar systems can also be found, e.g. in [van Megen 1998] and [Brambilla 2009].

Both works investigate the dynamics of a hard-sphere suspension similar to the one

used in this thesis. The authors of [van Megen 1998] found quantitative agreement

with predictions of the scaled MCT, with a clear glass transition at Φg ≈ 0.57,

where the long-time relaxation diverged. On the contrary, Brambilla et al. report

strong deviations from the MCT model, including ergodic behaviour at Φ > 0.59.

This observation rather supports a scenario where the free volume is responsible for

kinetic arrest at Φ ≈ ΦRCP , which is the random close packing volume fraction.

5.2 Data acquisition and processing

The samples at high packing fractions display a sufficiently slow dynamics for

multi-speckle XPCS with the MAXIPIX detector to be used. The highest possible

frame rate was ≈ 1 kHz and for each measurement a series of 10000 scattering

patterns was recorded. This gives approximately 13 s of sample exposure to X-

rays, including 3 ms dead-time of the detector. To minimize the possible influence

of radiation damage, the sample was moved to a fresh spot before repeating the

measurement.

Determination of whether the static structure of the sample evolves during ac-

quisition time can be done by time- and azimuthal-averaging of the scattering pat-

terns. For this purpose the frames are grouped into 10 bins, containing 1000 images

each. Next, averaging is performed over all images in each bin, giving 10 static

scattering curves, as presented in figure 5.1. Each curve is labelled with the delay

time between the beginning of the measurement and the acquisition time of the

center frame of the corresponding bin.

Before calculating the correlation functions, several preparative steps are taken

in order to exclude bad data from the analysis. First, on the basis of a scattering

pattern time-averaged over all acquired images a mask is prepared which allows

to exclude the detector area covered by the beam stop as well as pixels that were

strongly influenced by parasitic scattering from the beam defining pinhole, which

can never be perfectly screened by the guard slits.

In a second step this mask is refined by analysing the intensity in single-pixel

wide rings, corresponding to the same value of |~q|, which is expected to fluctuate

around an angle-independent mean value. All pixels recording intensities above an

arbitrary threshold of 3 times the standard deviation from the mean value ±3σ are

masked (see figure 5.2). This step also allows to detect a deviation of the assumed

direct beam position on the detector from the real one. As seen in figure 5.3, even
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Figure 5.1: Time evolution of the time- and azimuthally-averaged scattered inten-

sity calculated from a series of 2D speckle patterns used for XPCS. The resemblance

between the curves indicate a stable structure during the measurement and hence

there are no signs of beam damage.

a slightly mispositioned center results in clear angular dependence of the intensity

fluctuations in one ring.

Further refinement of the mask is achieved by calculating the normalized vari-

ance of intensity in time. The same 3σ threshold is then applied to discard pixels,

which display a too high variance value compared to the average calculated in a

single-pixel wide, iso-|~q| ring.
The intermediate scattering function g1 is extracted from the measured corre-

lation functions using the Siegert relationship (see section 2.3.1). Non-linear least-

square fits of a stretched exponential form:

g2(q, t) = β exp [−2(Γ(q)t)γ ] + g∞ (5.5)

are used to obtain a first approximation of the experimental contrast β and the

baseline value g∞. Next, a simple exponential form is fitted only to the initial part

of g2 with a fixed value of g∞, obtained from the first fit. This step is applied to

refine the experimental contrast value and obtain the first estimate of the short-time

diffusion coefficient. The two steps allow to calculate the intermediate scattering

function as:

g1(q, t) =

√

1

β
(g2(q, t)− g∞) (5.6)
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Figure 5.2: Intensity fluctuations in a chosen subset of single-pixel wide rings of the

time-averaged scattering pattern. Horizontal red lines indicate the 3σ deviations

from the mean levels. Pixels with intensity value above or below the 3σ value are

excluded from further analysis.

Figure 5.3: Intensity fluctuations in a chosen subset of single-pixel wide rings of the

time-averaged scattering pattern calculated with a direct beam position deviated

by one pixel from the real value.

5.3 Results and discussion

5.3.1 Sample characterization using static scattering

The particle volume fractions Φ for every sample were obtained from fitting the

time- and azimuthally- averaged scattered intensity profile. The fitted model was

the analytical solution for the scattering function of a polydisperse hard sphere fluid
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in the Percus-Yevick approximation with a Schulz distribution of particle diameters,

derived in [Griffith 1987] (see section 1.2.2). Instrumental resolution was taken into

account by convolving the model function with a Gaussian distribution, calculated

using the pixel size as the width parameter. Results are presented in the left panel

of figure 5.4, with the fitted values of Φ indicated in the legend. The experimental
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Figure 5.4: The left panel shows fits of the time- and azimuthally- averaged scat-

tered intensity profiles using the analytical solution for the scattering function of

a polydisperse Percus-Yevick fluid with Schulz distribution of particle diameters.

Detector resolution (pixel size) has been taken into account by convolution of the

model with a Gaussian. Symbols represent the experimental data, the fits are

marked with solid lines. All curves have been shifted for clarity. The fitted volume

fractions Φ are indicated in the legend. The upper right panel presents “experi-

mental” structure factors, determined as S(q) = I(q)/P (q), where the form factor

P (q) has been obtained from SAXS measurements of a highly dilute suspension (see

figure 3.2 a). The lower right panel is a plot of the experimental S(q) peak position

(symbols) and the theoretical S(q) peak position vs volume fraction Φ.

structure factor S(q), shown in the right upper panel of figure 5.4, was calculated

assuming that

I(q) ∝ P (q) · S(q) (5.7)

where the data set presented in figure 3.2a was taken as the experimental form factor

P (q). Solid lines in the S(q) plot were calculated using values for particle radius,
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polydispersity and Φ obtained from I(q) fits. The highly overestimated value of the

S(q) peak is a sign of limited validity of the factorization applied [Chen 1986].

An important argument for the agreement between the experimental S(q) and

the hard sphere model is presented in the lower right panel of figure 5.4, which shows

the first peak position (as qmR) as a function of volume fraction. The symbols mark

the values extracted from the data by fitting a Gaussian function to the first peak of

S(q) and taking the mean of the distribution. Error bars correspond to 2σ, where σ

is the standard deviation from the mean. The solid line is extracted from the model

S(q) for hard spheres [Griffith 1986]. Fair agreement of the first S(q) peak position

extracted from the data with the hard sphere model, as well as a good fit of the

model at higher q values justify the hypothesis of detector resolution and, mainly,

the limited validity of the factorization expressed by equation 5.7 being responsible

for the experimental S(q) peak height not following the model.

5.3.2 Short- and long-time dynamics

The validation of the presence and identification of the exact range of the short-

and long-time diffusive regions can be done by calculating a time-dependent diffu-

sion coefficient, as shown with DLS data in [Segrè 1996, Martinez 2011]:

D(q, t) = − 1

q2
d ln [g1(q, t)]

dt
(5.8)

On a plot of D(q, t) as a function of time, diffusive regions would appear as plateaus.

Since equation 5.8 requires numerical differentiation, the result can be noisy, even

in the case of low noise DLS data. With XPCS and correlation functions calculated

from 2D detector data using the multi tau algorithm, the analysis of D(q, t) be-

comes challenging, due to the non-linear spacing of data points, which introduces

jumps in the derivative of g1(q, t). A different approach can be taken, using the

so called width function, defined analogically to the mean squared displacement

[Martinez 2008]:

w(q, t) = − ln [g1(q, t)]
q2

(5.9)

By substituting the intermediate scattering function with the form including a

generalized diffusion coefficient we obtain:

g1 = exp [−D(q)q2t] (5.10)

we obtain from equation 5.9:

w(q, t) = D(q)t (5.11)

It is particularly useful to present the width function in log-log representation, since:

log [w(q, t)] = log [D(q)t] = log [D(q)] + log (t) (5.12)

This means that in case of diffusive dynamics, the plot of log [w(q, t)] vs log (t)

would place the data points on lines with slope 1, intersecting the log (t) = 0 line

at value equal to log [D(q)].
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Figure 5.5: Logarithm of the width function plotted for a single volume fraction

and qR value indicated.

Figure 5.5 presents an example of the width function calculated for a sample

at Φ = 0.582. The dashed lines show the fitted values of log [DSt] and log [DLt].

The black solid line marks the free diffusion coefficient – log [D0t], obtained from

DLS measurements of a highly diluted sample. A significant difference between

D0 and DS(q) illustrates the strong influence of hydrodynamic interactions on the

dynamics. The obvious advantage of this data representation is that both the short-

and long-time regimes can be illustrated without the need of rescaling the time axis.

The width functions at qR near the structure factor peak are presented in figure

5.6 for all volume fractions. As expected, the increase of particle packing results in

slowing down of the dynamics and a more pronounced separation between the two

diffusion coefficients. The presence of two diffusive time scales is shown well in the

left panel of figure 5.7, where the fitted values of DS(q) and DL(q) are used to plot

the dashed lines corresponding to log [DS(q)t] and log [DL(q)t] for the same qR value

as in figure 5.6. The curves in figure 5.7 are separated for clarity by subtracting

a constant. The linear fits were done on the appropriate regions of w(q, t) with

only one free parameter – the slope, which in the logarithmic representation is

transformed into the intercept with the ordinate axis. For comparison, the right

panel of figure 5.7 shows the data and fits for a qR value away from the S(q)

peak. While in the short-time limit, the data remain well fitted by the straight

lines, indicating diffusive behaviour, the presence of long-time diffusive region can

be determined only in the case of most concentrated sample. A similar observation

was made in [Martinez 2011]. There, the authors were unable to unambiguously

identify a long-time diffusive region away from the structure factor peak. However,

the volume fractions investigated in this thesis go above the ones used in the work
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Figure 5.6: Logarithm of the width function plotted for volume fractions and qR

value indicated. The relative volume fractions of the samples are well resolved, with

both the static fits (values indicated in the legend) and the slowing down of the

dynamics (especially in the long-time limit) giving the same order of samples in

terms of Φ.

of Martinez and co-workers, where the most concentrated sample was Φ = 0.549.

For a more quantitative evaluation of the end of short- and beginning of long-

-time diffusive regions, a simple numerical procedure has been applied, illustrated

in figure 5.8. First, the absolute difference between the fitted value of log [DS(q)t],

log [DL(q)t] and log [w(q, t)] was calculated:

δDS = | log [DS(q)t]− log [w(q, t)]|
δDL = | log [DL(q)t]− log [w(q, t)]| (5.13)

The values of δDS and δDL are shown as dotted lines in figure 5.8. Next, linear

fits were performed on two regions of each of the curves – the time independent

part was fitted with a constant (y = b) and the initial part of the slope with a

linear form (y = ax+ b). The cross points of the two lines are taken as the end of

short-time diffusive region (tS), extracted from δDS , and the beginning of long-time

diffusion (tL) from δDL. Additionally, the crossing point of δDS and δDL has been

found and marked as tm. It is expected to correspond to the inflection point of the

log [w(q, t)] curve, which in this case is difficult to identify from numerical derivative

for reasons explained earlier. All the characteristic times for qR = 3.66 (near the

principal peak of S(q)) and the different volume fractions probed are collected in

table 5.1.

A diffusive behaviour is expected to persist as long as the particles do not

interact directly with each other. Having this in mind it is interesting to compare the

experimentally observed value tS to the average time between particle encounters
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values of qR – near the S(q) peak (left panel) and away from it (right panel). While

near the S(q) peak both diffusive regions are well pronounced at all volume fractions

probed, at higher values of q long-time diffusive behaviour can be distinguished

clearly only at the highest concentrations.

τc, which can be estimated from the average gap between particles Rc at a given

volume fraction [van Megen 2005]

Rc =

(

ΦR

Φ

)1/3

− 1. (5.14)

Here it is assumed that the particles are in contact at the random close packing

concentration ΦR = 0.67 [Schaertl 1994]. The value of Rc calculated from equation

5.14 is given in units relative to the particle radius. Assuming diffusive dynamics,

the average time between collisions can now be calculated from the experimentally

determined short-time diffusion coefficient as:

τc =
R2

c

6DS
. (5.15)

The results of these calculations are also presented in table 5.1. Surprisingly, tS
is approximately one order of magnitude larger than τc and the ratio tS/τc can be

taken as a measure of the average number of collisions before the short-time diffusive

character of the dynamics is lost. This suggests that the diffusive behaviour of the

measured intermediate scattering function (ISF) is lost only after several collisions

between particles have taken place, and not just after the first encounter.
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Figure 5.8: Illustration of the procedure identifying the limits of short- and long-

time diffusive regions.

An inverse approach can also be applied by calculating the square root of the

mean squared displacement associated with the time tS :

RS =

√
6DStS
R

. (5.16)

A comparison to Rc (see table 5.1) leads to the same conclusion – the average

distance travelled by a particle before the dynamics looses diffusive character is

larger than the separation between particles.

Additionally, the measured tS shows no clear volume fraction dependence, as

can be seen in figure 5.10, while τc is by definition Φ dependent. The value of tS is

remarkably close to the structural relaxation time defined by τR = R2/D0 = 12 ms,

which is commonly accepted as the time after which direct particle interactions

cannot be neglected [Pusey 1991].

As the diffusive regime is clearly identified at short times, the DS(q) ex-

tracted from fits of the width functions has been used to calculate the hydrody-

namic function H(q) from equation 5.2, as the input structure factor using the

analytically solved Percus-Yevick approximation including Schulz size distribution

[Griffith 1986]. The model function for S(q) was used to calculate the H(q) instead

of the experimental structure factor. The result is presented in figure 5.11, which,

in addition to data for samples at Φ > 0.5 includes a lower concentration sample

at Φ = 0.466 measured with a point detector. The values of H(q) become much

smaller for the more concentrated samples. For hard-sphere suspensions up to the
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Figure 5.9: A plot of the two limiting times: tS (circles) and tL (squares) as a

function of q. Different colors correspond to different volume fractions, as indicated

in the legend.

Table 5.1: Characteristic times for different volume fractions at qR = 3.66. For

comparison, the structural relaxation time: τR = R2/D0 = 12.481 ms

Φ tS [ms] tm [ms] tL [ms] RS Rc τc [ms] tS/τc

0.528 9.33 22.97 86.91 0.262 0.083 0.93 10.03

0.553 10.01 40.02 152.06 0.197 0.066 1.13 8.86

0.576 9.80 71.69 465.44 0.139 0.052 1.35 7.26

0.582 9.64 59.63 275.04 0.143 0.048 1.09 8.84

0.597 11.54 98.31 556.72 0.087 0.039 2.34 4.93
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Figure 5.10: Volume fraction dependence of the characteristic time scales at q ≈ qm.

freezing transition volume fraction the decrease of H(q) value indicates an increase

in the strength of hydrodynamic interactions. The calculation of H(q) is a com-

plex, many-body problem and only an approximate theoretical treatment is feasible.

Nevertheless, significant amount of experimental and simulation data on short-time

dynamics of suspensions up to Φ ≈ 0.494 has been analysed and understood within

the modified mode-coupling theory. A good example is given by Banchio et al. in

[Banchio 2008], where the results of accelerated Stokesian dynamics (ASD) simu-

lation are compared to several theoretical predictions and experimental results of

Segrè et al. [Segrè 1995a]. In Stokesian dynamics the colloidal suspension is de-

scribed by solving the Langevin equation, which is the equivalent of the Newton’s

second law of motion for a Brownian particle and takes the form [Banchio 2003]:

m · d~u
dt

= ~F h + ~F b + ~F p, (5.17)

wherem is the generalized mass/moment of inertia tensor, ~u is the particle velocity

vector and on the right hand side are the forces/torques acting on the particles,

including the hydrodynamic forces ~F h, stochastic Brownian forces ~F b and the de-

terministic nonhydrodynamic forces ~F p, either interparticle or external. The im-

portant feature of the Stokesian dynamics approach is the inclusion of many-body

long-range hydrodynamic interactions, which are simplified in the popular, Brown-

ian dynamics technique of solving equation 5.17. The ASD algorithm developed by

Banchio and Brady [Banchio 2003] is an improvement reducing the computational

cost of calculating the hydrodynamic interactions.

The principal peak H(qm) of H(q) is shown in [Banchio 2008] to occur prac-

tically at the same wavevector value as the S(q) peak. The peak amplitude as a

function of Φ follows very well the simple empirical form obtained from rescaled

MCT:

H(qm) = 1− 1.35Φ (5.18)
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Figure 5.11: Hydrodynamic function H(q) = S(q)DS(q)/D0. The inset – H(qm)

vs Φ (symbols) compared to the theoretical prediction from MCT [Banchio 1999b]:

H(qm) = 1− 1.35Φ.

up to the freezing transition. XPCS data presented in [Orsi 2012b], again at con-

centrations up tp Φ ∼ 0.5, are also in good agreement with equation 5.18. The

inset of figure 5.11 shows the volume fraction dependence of H(qm) for the samples

investigated in this thesis. The dashed green line is a plot of equation 5.18. It

largely overestimates the value of H(qm) at Φ > 0.5. The first data point, which

is within the equilibrium fluid concentration range, lies much closer to the model

curve. Considering the 3% uncertainty of the value of Φ and that the q value of

this point is not exactly equal to qm, it can be argued that the 0.466 concentration

remains in agreement with previous results and fits well with equation 5.18, even

though the statistical error bar (of the order of symbol size in the inset of figure 5.11)

is much smaller than the distance to the theoretical curve. In summary, although

the overall shape of H(q) for hard-sphere suspensions does not significantly change

above the freezing volume fraction, its magnitude is no longer described by predic-

tions valid for Φ < 0.5. A possible explanation can be that at these high volume

fractions direct interparticle interactions become important even at short times, as

concluded from the comparison of tS and τc. Indeed, collisions can be responsible

for the additional slowing down of particle dynamics, which is not explained by

pure HI.
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Focusing on the long-time dynamic behaviour, an approximately diffusive regime

can always be observed in the data near the wavevector qm, corresponding to the

structure factor peak value. The time tL indicating the beginning of long-time

diffusion, is shown as a function of Φ in figure 5.10. With increasing particle volume

fraction tL moves towards longer times, indicating the approach of an arrested state.

However, the anticipated freezing of the long time relaxation is not observed in the

sample at Φ ≈ 0.597, which is above the previously identified glass transition volume

fraction of ∼ 0.58 [Orsi 2012b]. It should be stressed that the high uncertainty of

the determined volume fraction (3%) prevents from drawing strong conclusions from

this observation [Poon 2012]. Looking at the plot of normalized short- and long-

-time diffusion coefficients in figure 5.12 it is clear that the slowing down of the

dynamics observed between the sample at Φ = 0.582 and 0.597 is much larger than

between the samples at lower concentrations.
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Figure 5.12: Inverse relative short- and long-time q-dependent diffusion coefficient

(left and right panel respectively) as a function of qR for volume fractions indicated

in the legend.

A comparison of results from viscometry and TCDLS presented in [Segrè 1995b]

revealed a remarkable scaling between the long-time diffusion coefficient and the

low-shear-rate viscosity of a similar suspension of hard-sphere particles. More pre-

cisely, the cited results show that:

D0

DL(qm)
=

η

η0
(5.19)

Here η is the suspension viscosity and η0 is the viscosity of the suspending liquid.

Although no viscometric measurements were performed for this thesis, equation 5.19

can be used to compare the values of D0/DL(qm) to a model of η(Φ) derived by

Cohen et al. in [Cohen 1997]. There the authors present an approximate equation

for the low-shear-rate viscosity as a function of volume fraction, which is shown to

follow well several data series taken on sterically stabilized silica suspensions. The
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equation has the form:

η(Φ) = η0χ(Φ)

[

1 +
1.44Φ2χ2(Φ)

1− 0.1241Φ + 10.46Φ2

]

(5.20)

where χ(Φ) is the fraction of particle pairs at contact, calculated from the Carnahan-

Starling expression:

χ(Φ) =
1− 0.5Φ

(1− Φ)3
. (5.21)

A comparison of η/η0 derived from equation 5.20 and the experimental data for

D0/DL(qm) is presented in figure 5.13. Additionally to the samples at Φ > 0.5, a

data point for Φ = 0.466 is added, obtained from a point detector measurement.

The data points clearly deviate from the theoretical curve at high volume frac-

tions. This behaviour is in qualitative agreement with the observations reported

in [Phan 1996], where it has been shown that the relative viscosity data for con-

centrated suspensions of PMMA-PHSA spheres, above the freezing transition at

Φ ≈ 0.494, significantly deviate towards higher values from the ones reported for

silica suspensions.
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Figure 5.13: Comparison of the model expression for η/η0 (from equation 5.20) and

the experimental data for D0/DL(qm). The uncertainties of the data points are

smaller than the markers used to plot them.

The strong divergence of η/η0 (or D0/DL(qm)) resembles the behaviour of the

viscosity in fragile glass formers, described by the Vogel-Fulcher-Tammann (VFT)

form [Debenedetti 2001]:

η = A exp

[

B

T − T0

]

(5.22)

where A and B are temperature-independent constants, and T0 is the transition

temperature. For the description of a hard-sphere colloidal suspension, equation
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5.22 can be transformed to describe the volume fraction dependence of the structural

relaxation time τα [Brambilla 2009]:

τα =
1

DL(q)q2
= C exp

[

D

(Φ− Φ0)δ

]

(5.23)

with the appropriate set of constants C and D. A simple transformation of equation

5.23 allows to fit the data presented in figure 5.13, allowing for variation of param-

eters C, D, Φ0 and δ. The resulting best fit (dashed red line) follows the data very

well with parameter values presented in table 5.2. The error bars in figure 5.13 are

smaller than the data point markers. The fitted critical value Φ0 agrees remarkably

Table 5.2: Fit results for the VFT formula (equation 5.23).

C (×10−4) [s] D Φ0 δ

3± 2 0.8± 0.3 0.68± 0.01 1.00± 0.01

well with the random close packing volume fraction found in simulation studies for

hard spheres with 10% polydispersity [Schaertl 1994]. In conclusion, these results

show an exponential divergence of τα at a critical volume fraction Φ0 ≈ ΦR ≈ 0.68,

significantly above the commonly quoted value of glass transition of hard sphere

colloids at Φg ≈ 0.58. Similar findings using a combination of DLS and computer

simulations were reported in [Brambilla 2009]. There, good agreement with for-

mula 5.23 has been found with δ = 2. The obtained value of Φ0 = 0.637 was also

significantly higher than Φg. However, the Φ0 value is significantly smaller than

found in this thesis.

Further insight into the form of dynamical slowing down of the colloidal suspen-

sion can be gained by looking at the peak value of the reduced, short- and long-time

diffusion coefficients: DS(qm)/D0 and DL(qm)/D0, which correspond to the MCT

β and α relaxation measured near q = qm. Plotted as a function of the so-called

“separation parameter” |Φg−Φ|, the short-time relaxation has been shown to follow
a power scaling law [van Megen 2007a, Orsi 2012b]:

DS(qm) ∝ |Φg − Φ|1.66 (5.24)

which should be valid not only in the liquid state but in a glass as well [Götze 1991].

A different power is predicted for DL(qm):

DL(qm) ∝ |Φg − Φ|2.58. (5.25)

The two scaling laws described by equations 5.24 and 5.25 are tested in figure 5.14.

Additional, lower concentration data is also shown, previously obtained by Orsi

et al. [Orsi 2012b] and Zontone et al. [Zontone ] in a similar system (sterically

stabilised PMMA hard-sphere particles). Although the lower concentration data

appear to follow the theoretical lines reasonably well, the points for concentrations
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Figure 5.14: Normalized diffusion coefficient measured at q ≈ qm vs the separation

parameter |Φg−Φ|, where Φg = 0.585. The dashed blue and green lines correspond

to the MCT predictions described by equations 5.24 and 5.25.

closer to Φg deviate towards higher values, avoiding the final freezing at the assumed

glass transition point. The interpretation of figure 5.14 should be cautious. Firstly,

the determination of the absolute sample volume fraction is not precise [Poon 2012].

Shifting the fitted values of Φ within the estimated uncertainty of 3% can lead

to different conclusions. Secondly, the location of the colloidal glass transition

point, the very nature of the transition and the form of the structural relaxation

time divergence remain open issues [van Megen 1998, Cheng 2002, Brambilla 2009].

Nevertheless, together with the analysis presented in figure 5.13, the results point

towards the conclusion that near the MCT predicted glass transition a cross over

from an algebraic (equation 5.25) to an exponential (equation 5.22) divergence of

the relaxation occurs. Hence, there is no glass transition visible in the data.

5.3.3 Scaling of the intermediate scattering function

An interesting observation regarding dynamics of colloidal hard spheres at high

volume fractions has been reported in [Segrè 1996]. The authors used dynamic

light scattering to measure the intermediate scattering functions g1(q, t) in a range

of volume fractions encompassing the equilibrium and metastable fluid states. The

results reveal a simple scaling procedure which collapses the g1(q, t) measured for

different q values on a single master curve. The procedure can be described by the
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following equation:
ln [g1(q, t)]

DS(q)q2
= −χ(t), (5.26)

where χ(t) is a q independent function of time. An example of the scaling is shown in

figure 5.15. This behaviour was observed for all Φ values up to the glass transition.

Figure 5.15: The intermediate scattering functions from DLS measurements of hard-

-sphere particles at volume fraction Φ = 0.465. Panel (a) shows the natural loga-

rithm of the ISF vs. time. In panel (b), the scaling procedure, described by equation

5.26 has beed applied, leading to the collapse of the data on a single master curves

for qR values above 2.7. Figure reproduced from [Segrè 1996].

When the short- and long-time diffusion coefficients were plotted as D0/DS(q) and

D0/DL(q), they followed the oscillations of the structure factor, being related to

each other by a factor of roughly 4.3 at Φ = 0.465 (see figure 5.16). The suggested

interpretation of this finding is that the two relaxation mechanisms: short- and long-

time, are both related to self-diffusion. This is counterintuitive, since the long-time

relaxation origins from large-scale collective motion of particles, and its connections

to single-particle diffusion is not obvious.

The system used by Segrè et al comprised PMMA particles, sterically stabilized

with thin layers of poly-12-hydroxystearic acid, suspended in cis-decalin or cis-
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Figure 5.16: Normalized short- and long-time diffusion coefficients extracted from

fits of the linear regions in ln [g1(q, t)] vs q2t at volume fraction Φ = 0.465. The

dashed line is the the theoretical static structure factor S(q). Figure reproduced

form [Segrè 1996].

-decalin/tetralin mixture (to suppress multiple scattering by matching the index

of refraction of the particles and the suspending medium). In order to probe a

wide range of volume fractions, two preparations of particles were used. First set

of samples, with cis-decalin as the suspending medium, was composed of particles

of a mean radius R = 178 nm and size polydispersity σ ≈ 0.05. A method reported

in details in [Segrè 1995a] was used to calibrate the sample volume fraction Φ by

assuming the observed freezing concentration to be Φ = 0.494, corresponding to

the value predicted for perfect hard spheres. Samples at lower Φ were prepared by

dilution. To study Φ > 0.494 the authors used particles of R = 207 nm and larger

polysdispersity, σ ≈ 0.12, which prevented crystallization.

Several studies, both experimental and theoretical, have been reported up to

date in the subject, giving different results. XPCS measurements on concentrated,

charge-stabilized polystyrene latex spheres suspended in glycerol ([Lurio 2000])

showed no scaling of g1(q, t). The authors investigated a range of samples with

volume fractions 0.027 . Φ . 0.52. They were able to recognize the two diffusive

regions for Φ & 0.34. The short- and long-time diffusion coefficients were deter-

mined by linear least-square fits of time ranges where the log[g1(q, t)] showed linear

time dependence. The calculated DS(q)/DL(q) ratio was clearly q dependent. Also,

the intermediate scattering functions, scaled as in [Segrè 1996] did not collapse on

a single master curve. The discrepancy between the presented results and those of

[Segrè 1996] has been attributed to the possible difference in the dynamic behaviour

of sterically- and charge-stabilized systems, which in fact has been reported in a

recent study [Robert 2008].

Surprisingly, the authors of [Holmqvist 2010] obtained results confirming the

scaling in a suspension of charge-stabilized particles (DLS study). They also found
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that the scaling is an approximate feature and the long-time mode is clearly observ-

able only where the S(q) is large. Particles used in their work were silica spheres

coated with trimethoxypropyl methacrylate of radius R = 136 nm and polydisper-

sity of σR/R = 0.06 (determined by SAXS), suspended in an index-matching 80:20

toluene-ethanol mixture. Volume fractions up to the freezing transition at Φ ≈ 0.16

were investigated.

The idealized MCT [Götze 1991] has been used to provide a semiquantitative

explanation of the g1(q, t) scaling [Fuchs 1999], even though in MCT the α and β

relaxations have different physical origins. The long-time, structural relaxations

(α) have a non-diffusive character, but at high enough scattering vector q values

and low enough values of time, this behaviour may not be very well pronounced.

As a result, the intermediate scattering functions scaled as in equation 5.26 approx-

imately collapse on a single master curve. The authors stress that this behaviour

may be restricted to the specific system of sterically stabilized hard-sphere like col-

loids, and may not necessarily be present in other, like charge stabilized particles.

The above mentioned experimental results reported in [Lurio 2000, Lumma 2000a]

are in good agreement with this statement.

Another theoretical approach has been presented in [Verberg 1999,

Verberg 2000]. The authors extend the results obtained by Beenakker and

Mazur in [Beenakker 1984] by describing DS(q) and DL(q) in terms of the

cage-diffusion process, using a mean-field approximation of the diffusion tensor.

The derived expressions are in relatively good agreement with the experimental

results of Segrè and Pusey [Segrè 1996]. Collective short- and long-time diffusion

coefficients are shown to oscillate in a similar manner around the corresponding

self-diffusion coefficients – Ds
S(q) and Ds

L(q). Their ratio, being approximately q

independent, is the source of the observed scaling. It holds only near the principal

peak of S(q) due to the limiting values of the derived expressions, which show that

DL/DS → 1 for both q → 0 and q → ∞.

In [Martinez 2011] the authors only observe the long-time diffusive behaviour

of the sterically stabilized particles at q values near qm. Although the short-time

diffusive regimes were clearly visible in the data over several decades for all volume

fractions and qR values probed, the long-time diffusive behaviour could only be

identified at q values corresponding to the structure factor peak (qm) for Φ ≥
0.498. Consequently, the authors were unable to test whether or not the ratio

DS(q)/DL(q) is q-independent. Instead, the ratio of an apparent diffusion coefficient

D(q, τx) at several delay times τx was defined and the ratio of D(q, τx)/DS(q) was

calculated for several volume fractions. The results showed no signs of scaling.

The normalized inverse of the short-time diffusion coefficient D0/DS(q) was shown

to scale with the structure factor oscillations, in agreement with previous results.

The authors also note that with increasing volume fraction a faster deviation from

diffusive behaviour was observed, even though the dynamics was slowing down.

Although the long-time diffusive behaviour has not been observed, a plot of the time-

-dependent diffusion coefficient, D(q, t) = ∂ ln [g1(q, t)]/q
2∂t divided by DS(q) was

shown to collapse on a single master curve for qR & 2, in agreement with the findings



5.3. Results and discussion 77

reported in [Segrè 1996]. The authors explain the lack of a long-time diffusive

regime by reasoning that in the accessible time scales the particles are unable to

move the distances necessary for the number density fluctuations to forget packing

constraint effects. The suspension studied by Segrè et al. comprised particles of

a copolymer core of methylmethacrylate and trifluorethylmethacrylate, the latter

added to enable refractive index matching in the suspending liquid – cis-decalin.

Particles were sterically stabilized by an approximately 10 nm thick layer of poly-

12-hydroxystearic acid and had a radius R = 185 nm with 8% - 9% polydispersity.

The range of volume fractions used was 0.01 ≤ Φ ≤ 0.549.

To relate the results presented in this thesis to previous finding, the scaling is

first tested by plotting the intermediate scattering functions in the same form as

presented in [Segrè 1996], that is ln [g1(q, t)]/DS(q)q
2, for q > 2.5 and all volume

fractions are presented in figure 5.17. The curves collapse on a single master curve

reasonably well up to the solid blue line, indicating tL. They diverge above that

value, suggesting that the DS/DL ratio is not q-independent. This behaviour is

similar to the one observed by Martinez et al. [Martinez 2011], who also found that

the the scaling by DS(q) fails at long times for a similar, sterically stabilized system.

Corresponding results were also obtained for charge stabilized particles, presented

in [Lurio 2000].

The ratio of the short- and long-time diffusion coefficients is plotted as a function

of qR for all samples in figure 5.18. Significant q dependence is clearly visible near

qm. Although for qR & 4 the ratio becomes reasonably constant, it should be

stressed, that in this region the long- time diffusive behaviour, and therefore DL(q),

is not very well defined for the lowest concentrations studied.
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Figure 5.17: Logarithm of the intermediate scattering function (g1(q, t)) divided

by the short-time diffusion coefficient DS(q)q
2 for volume fractions and qR values

as indicated. In this representation the data shown in [Segrè 1996] collapsed onto

a single master curve for qR & 2.5. The black dashed line represents the short-

time diffusion coefficient (slope −1). Vertical solid line marks the beginning of the
long-time diffusive region (tL) for g1(qm, t) – measured near the S(q) peak.
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5.3.4 Non-exponential long-time relaxation

Another interesting observation can be made by comparing the normalized cor-

relation function for different concentrations and qR values, plotted in the typical

log-lin representation (figure 5.19). It becomes evident that for the most concen-

trated sample not only the relaxation time becomes slower, but also the shape of

the correlation function changes. To quantify this decay the long-time parts of the
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Figure 5.19: Comparison of the intermediate scattering functions for all volume

fractions probed at qR values indicated in the figure.

correlation functions have been fitted with the KWW formula:

g2(q, t) = 1 + β exp [−2(Γt)γ ]. (5.27)

The correlation functions together with the fits are shown for several q values in

figure 5.20. The resulting values of γ and Γ are plotted as a function of qR in the
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two bottom panels of figure 5.20. The larger than one value of γ indicates faster

than exponential decay, which is very unusual for this system. Typically, the α re-

laxation of a glass-forming liquid is well described by a stretched exponential, with

γ < 1 [Debenedetti 2001]. Compressed exponential relaxation with γ ≈ 3/2 has

been observed by Cipelletti et al. [Cipelletti 2000] in a fractal colloidal gel of ag-

gregating polystyrene particles. A convective rather than diffusive mechanism was

proposed to explain the relaxation behaviour, although density matching of the sys-

tem rules out a global sedimentation effect. The 3/2 value of the KWW exponent

has been explained by heterogeneous “micro collapses” of the gel and its elastic

(solid-like) response to the resulting deformation. A model for the local rearrange-

ments has been proposed by Bouchaud and Pitard in [Bouchaud 2002], providing

an analytical form of the dynamic structure factor which is in agreement with the

experimental results of Cipelletti et al. Later experiments on different systems re-

ported in [Cipelletti 2003] suggest that such non-diffusive slow dynamics may be a

universal feature of disordered, jammed soft-matter. The compressed exponential

shape and q proportionality of the relaxation rate can be explained by ultraslow

ballistic motion of the scatterers, caused by release of internal stresses. In fact, the

exponent 1 < γ < 2 can be explained by a wide distribution of ballistic relaxation

times, while γ < 1, often observed in glassy materials, indicates a wide distribution

of diffusive or subdiffusive relaxation times [Cipelletti 2003]. The explanation pro-

posed by Cipelletti et al. for γ = 3/2 and quantified by Bouchaud and Pitard points

towards dynamical heterogeneities, which can be detected by calculating the nor-

malized variance χ(q, t) of the two-time correlation function (equation 2.22), which

is related to the dynamic susceptibility [Madsen 2010, Duri 2006]. The use of the

MAXIPIX detector allowed to calculate normalized variance χ(q, t) of the two time

correlation function (see section 2.3.2), which is plotted as red lines, together with

g2(q, t) in figure 5.20. Clearly, χ(q, t) is flat which is a sign of simple Gaussian,

non-heterogeneous dynamics. This result can be compared to similar observations

made on a system of cross-linked polymer gels during formation [Czakkel 2011]. In

that work compressed exponential decays of the long-time ISF were also observed,

together with a Γ ∝ q scaling. Additionally, a strong ageing of the dynamics was

observed, with no signs of dynamical heterogeneity. The system studied by Czakkel

et al. is fundamentally different from the one used in this thesis. In particular, no

significant age dependence of the dynamics during the measurement time is detected

in the hard-sphere suspension, as can be seen in the plot of the two-time correlation

function in figure 2.6, given as an example of stationary dynamics. We conclude

that the dynamics of the concentrated colloidal suspension is best described within

a jamming model behaving in a solid-like manner but without dynamical hetero-

geneity. This implies kinetic arrest rather than a glass transition scenario being

responsible for the slowing down of dynamics.
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0.0
0.5
1.0
1.5
2.0
2.5

χ
(q
,t
)

×10−1

10−3 10−2 10−1 100 101

t (s)

1.00

1.05

1.10

1.15

1.20

1.25

g
(2

)

0.0037 Å−1

0.0
0.5
1.0
1.5
2.0
2.5

χ
(q
,t
)

×10−1

10−3 10−2 10−1 100 101

t (s)

1.00

1.05

1.10

1.15

1.20

1.25

g
(2

)

0.0039 Å−1

0.0
0.5
1.0
1.5
2.0
2.5

χ
(q
,t
)

×10−1

1 2 3 4 5 6 7
qR

0.8

1.0

1.2

1.4

1.6

1.8

γ

1 2 3 4 5 6 7
qR

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Γ

Figure 5.20: A plot of correlation functions g2(q, t) measured on the sample at

Φ = 0.597 for several q values. Blue solid lines indicate fits of the long-time regions

with the KWW formula. Fit parameters of the exponent γ and the relaxation rate

Γ are presented as a function of q in the lower left and right panels respectively.



5.3. Results and discussion 83

5.3.5 Two-time correlation functions

Jammed, soft-matter systems have been reported to undergo ageing on very long

time scales of the order of hours, like in the case of a colloidal suspension of laponite

[Bellour 2003]. In search of such behaviour in the most concentrated sample used

in this thesis (Φ = 0.597), several XPCS data series were taken over a period of ∼ 9

hours counting from the capillary filling time. Figure 5.21 presents three two-time

correlation functions G(q, t1, t2) measured for the same q value at different sample

ages. The two-time correlation in the left panel was previously shown in figure 2.6.

It shows stationary dynamics with no pronounced signs of ageing. This data set

has been used to calculate g2(q, t), which has been analysed in the previous sections

of this chapter. The normalized variance χ(q, t) of this series, presented in figure

5.20 also showed no signs of dynamical heterogeneity. A measurement taken ∼ 2

hours later on a different location of the sample (to exclude the potential influence

of radiation damage) reveals a dramatic change in the dynamics (middle panel of

figure 5.21). Several transitions from slow to fast decorrelation can be seen within

the presented time window. This behaviour persists even after 9 hours from the

capillary filling time (right panel in figure 5.21).
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Figure 5.21: Two time correlation functions for the same sample and q value at

different sample ages, measured from the capillary filling time.

As explained in section 2.3.2, by averaging of the two-time correlation func-

tion along the diagonal t = (t1 + t2)/2 the regular correlation function g2(q, t) is

retrieved. This procedure has been performed on the G(q, t1, t2) presented in the

middle panel of figure 5.21. Several regions were chosen to calculate g2(q, t), as

marked by the numbered shaded areas in the left panel of figure 5.22. These corre-

lation functions, plotted in the upper right panel, reveal significant changes in the

long-time range, as well as contrast variations. Normalized variance χ(q, t) shown

in the lower right panel of figure 5.22 has a broad peak in the same time range

in which g2(q, t) significantly varies with measurement time. As mentioned before,

this could indicate dynamical heterogeneities, however such an interpretation is not
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necessarily valid. The complex, non-stationary dynamics may also be responsible

for this peak. In the work of Czakkel et al. [Czakkel 2011], despite the ageing be-

haviour observed in G(q, t1, t2), no peak in χ(q, t) and therefore no heterogeneities

are seen when the time evolution of G(q, t1, t2) is properly normalized out. An op-

posite example can also be given. The study of a 2D gel formed by a monolayer of

gold nanoparticles reported in [Orsi 2012a] shows clearly stationary two-time cor-

relation functions, indicating no age dependence of the dynamics, but strong peaks

in χ(q, t) are unambiguously associated to heterogeneous dynamics.
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Figure 5.22: Two time correlation function, one time correlation functions obtained

by averaging along the diagonals, χ vs q.

The complex ageing behaviour is clearly seen in the long-time regime when look-

ing at the G(q, t1, t2). It is less obvious what happens in the short-time limit. In

order to determine if the fast relaxation is also affected the correlation functions

extracted from the 7 regions marked in figure 5.22 were fitted with a simple expo-

nential decay. The contrast value obtained from these fits allowed to use equation

5.9 and represent g2(q, t) in the form of width functions, plotted in the right panel

of figure 5.23. Since the short-time region is still diffusive (slope ∼ 1 in the plot of

log [w(q, t)]), it is fitted to obtain the diffusion coefficient D∗
S , which is then used to

calculate the characteristic relaxation time τr:

τr =
1

D∗
Sq

2
(5.28)

Each width function can be labelled with the value of time corresponding to the

center of the slice used for its calculation. This allows to present τr as a function of

sample age measured from the beginning of the data series, shown in the left panel

of figure 5.23. Compared to the same relaxation time extracted from the previous

measurement, showing stationary dynamics (marked by the dashed red line), τr is
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shorter and grows with sample age, indicating that the dynamics is affected at all

time scales by the events observed in G(q, t1, t2).
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Figure 5.23: Left panel: width functions calculated for the correlation functions ex-

tracted from G(q, t1, t2) for the sample ∼ 2.5 h old. The dashed black line indicates

slope 1. Right panel: age dependence of the short-time relaxation times τr. The

dashed red line marks the relaxation time extracted from the stationary data series.

Access to different q values allows to look at the character of the dynamics

at different length scales. The two-time correlation functions for 2.75 × 10−3 ≤
q ≤ 4.95 × 10−3Å−1 are plotted in figure 5.24. They all present similar features,

indicating that the physical process behind them simultaneously affects all length

scales probed. This is better seen in the “waterfall plot”, shown in figure 5.25

for the sample 9 hours old, presenting the time evolution of the intensity of all

pixels corresponding to the same q, near the structure factor peak. Several points

in time can be found where the speckles “jump” simultaneously in many pixels.

These points can be identified as the onsets of slowing down or speeding up of the

dynamics seen in the two time correlation function plot (right panel of figure 5.21).

Although it is difficult to quantify this process, some qualitative comparisons can

be made with results found in literature. The distinct square seen in the G(q, t1, t2)

plot in the right panel of figure 5.21 describes a slowing down of the dynamics up

to a certain moment in time followed by the reverse process – transition from slow

to fast decorrelation. Many of the features present can be described in a similar

manner, with varying times of duration and relaxation. Similar behaviour has been

reported in [Sanborn 2011], where the authors use multi-speckle XPCS to study

the martensitic phase transition in cobalt. It is a structural transformation be-

tween two crystalline phases involving atomic rearrangement which shear the unit

cell. The produced strains are released in rapid avalanche-like events, which lead to
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characteristic features in the two-time correlation functions, resembling the above

described square in the right panel of figure 5.21. This scenario also fits well the

concentrated colloidal suspension studied in this thesis. The exponential form of

D0/DL(qm) vs Φ being well described by the VFT formula (section 5.3.2) together

with compressed exponential relaxation of the g2(q, t) for the most concentrated

sample (section 5.3.4) and complex, non-stationary dynamics, observed after a cer-

tain waiting time all point towards a jammed state of the particles being reached

upon increase of Φ. The sample at Φ = 0.597 behaves nearly like a solid. The

complex features present in G(q, t1, t2) could than be explained as originating from

large, sudden particle rearrangements – avalanches, caused by releases of stress

accumulated over time.
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2 4 6 8 10

(k)

q = 4.75× 10−3Å−1
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Figure 5.24: Two time correlation function for different q values.
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pixels corresponding to the same q. Measurement taken on a sample approximately

9 hours old.



Conclusion et perspectives

(français)

Le sujet de cette thèse était d’étudier le comportement dynamique d’une sus-

pension collöıdale de particules de type sphères dures. Plus spécifiquement, l’intérêt

portait sur la dynamique complexe à haute fraction volumique en particules, avec

le but d’explorer le phénomène d’arrêt dynamique observé, qui n’est accompagnée

d’aucune signature structurelle. Cette étude a éte effectuée principalement par dif-

fusion de rayons X aux petits angles (SAXS) et spectroscopie de corrélation de

photons X (XPCS).

Des études précédentes, combinant un dispositif d’écoulement et XPCS, ont

montré la faisabilité de mesures simultanées de la dynamique diffusive et de la

réponse advective au cisaillement appliqué. Il était intéressant d’appliquer cette

technique, non plus à une suspension diluée mais à des collöıdes concentrés sus-

ceptibles de présenter un comportement non-Newtonien. Mis à part l’intérêt fon-

damental d’étudier l’écoulement, le comportement dynamique des particules, et

leurs interactions, l’écoulement de l’échantillon pendant l’expérience est également

une façon très pratique d’éviter l’endommagement par irradiation de l’échantillon.

Ceci est montré de manière qualitative sur la figure 5.26, qui montre l’évolution au

cours du temps d’une figure de diffusion en SAXS dans un set typique de données

XPCS. Les données présentées dans la série supérieure de courbes ont été acquises

sur un échantillon sans écoulement. Une augmentation systématique de l’intensité

avec le temps peut être observée aux petits vecteurs d’onde, indiquant la croissance

d’agrégats de particules. Ceci est clairement modifié quand l’échantillon est soumis

à écoulement pendant la mesure, ainsi qu’on peut le voir dans la partie inférieure

de la figure 5.26, où toutes les courbes se confondent. L’endommagement par ir-

radiation est évité grâce au renouvellement constant de l’échantillon. Néanmoins,

cette méthode a ses limitations. Pour l’XPCS, la présence de l’écoulement induit un

mécanisme de décorrélation lié au mouvement advectif des particules, qui s’ajoute

à la diffusion. Si les échelles de temps caractéristiques qui correspondent à ces pro-

cessus ne sont pas bien séparées, il peut être impossible de les distinguer et de tirer

des conclusions exploitables sur la dynamique des diffuseurs. Ceci est un problème

dans le cas de suspensions concentrées, où la dynamique devient très lente. Imposer

un écoulement à l’échantillon peut alors mener à une décorrélation complète de la

fonction de diffusion intermédiaire mesurée, qui ne rendra compte que de la trans-

lation des particules à travers le volume diffusant. Une telle mesure ne contient

pas d’information utile. Les limitations pratiques doivent aussi être considérées –

il n’est pas toujours possible d’appliquer un écoulement continu suffisamment lent

pour effectuer l’expérience.
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En utilisant les propriétés uniques d’une source de rayonnement synchrotron

de troisième génération, et le détecteur MAXIPIX rapide à comptage de photon

unique disponible sur la ligne ID10 de l’ESRF, il a été possible de mesurer les

fonctions de diffusion intermédiaires dans une gamme de vecteurs d’onde et de

concentrations peu accessible expérimentalement via d’autres techniques. Les frac-

tions volumiques ont été déterminées en ajustant les profils radiaux de la figure de

diffusion moyennés axialement et dans le temps. Pour la première fois, à notre con-

naissance, des mesures de XPCS ont été effectuées sur des suspensions de sphères

dures à des fractions volumiques comprises entre 0.5 et 0.6. La décroissance en deux

temps caractéristique des fonctions de diffusion intermédiaires a été observée. En

représentant les données sous forme de “fonctions de largeur” (width functions), le

caractère des relaxations a pu être déterminé sans modèle a-priori. Dans la limite

des temps courts, une décroissance exponentielle a pu être observée pour toutes

les concentrations dans une large gamme de q. Néanmoins, aux temps longs une

décroissance approximativement exponentielle a pu être distinguée pour chaque

échantillon seulement aux environs de q = qm. Cette décroissance a persisté à

de plus grandes valeurs de q seulement pour les échantillons les plus concentrés

(Φ = 0.597).

Une analyse des échelles de temps limitantes extraites des fonctions de largeur

avec une procédure numérique simple a montré que le régime diffusif aux temps

courts est perdu uniquement après plusieurs collisions entre particules, et non

pas après une collision unique comme le laisse suggérer une hypothèse largement

répandue. L’influence possible des interactions directes entre particules, même dans

le régime des temps courts, est compatible avec le fait que les amplitudes observées

de la fonction hydrodynamique H(q) sont significativement plus basses que celles

prédites par extrapolation du modèle valide pour les concentrations plus basses.

La loi d’échelle entre le temps de diffusion aux temps longs normalisé et la

viscosité aux faibles taux de cisaillement, trouvé par Segrè et al. [Segrè 1995b],

a été utilisé pour montrer une discordance entre les résultats obtenus dans cette

thèse et un modèle qui décrit bien les données de viscosité des collöıdes à Φ < 0.5.

Les amplitudes des coefficients de diffusion normalisés, aux temps courts aussi bien

qu’aux temps longs, se sont aussi avérés s’éloigner du comportement prédit par

la théorie du couplage de modes. La dépendance de D0/DL(qm) avec la fraction

volumique pourrait être modélisée convenablement par la loi de Vogel, Fulcher et

Tammam (VFT) [Debenedetti 2001], indiquant plutôt un scénario cinétique qu’une

transition vitreuse.

Nous avons également testé le possible comportement en échelle des coefficients

de diffusion aux temps longs et aux temps courts, dont il a été montré que le rapport

est indépendant de q dans un système similaire de sphères dures [Segrè 1996]. Il

a été montré que les fonctions de diffusion intermédiaires normalisées par DS(q)

se rassemblent approximativement sur une même courbe pour toutes les fractions

volumiques étudiées dans cette thèse, mais seulement jusqu’au temps qui a été

identifié comme le début de la diffusion aux temps longs. Le tracé du rapport

DS(q)/DL(q) en fonction de qR montre une grande dépendance avec le vecteur
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d’onde, surtout dans le région de qm où le coefficient de diffusion aux temps longs est

identifié sans ambigüité. La variation avec q devient plus forte quand Φ augmente,

ce qui n’exclut pas que la loi d’échelle soit valide pour des fractions volumiques

inférieures à celles étudiées ici.

Une analyse plus détaillée de la fonction de corrélation mesurée pour

l’échantillon le plus concentré a révélé que sa forme peut être bien décrite par une

décroissance exponentielle comprimée plutôt qu’étirée, contrairement à ce qui est

observé pour la relaxation α dans les liquides formant verre [Debenedetti 2001].

Après avoir indiqué d’autres exemples de comportements de ce type dans la

littérature [Cipelletti 2000, Czakkel 2011], nous supposons que cette observation

reste bien dans l’axe de la conclusion que le ralentissment de la dynamique est

causé par un arrêt cinétique et non pas par une transition vitreuse.

Profitant des performances du détecteur 2D MEDPIX, nous avons calculé les

fonctions de corrélation à deux temps, qui révèlent un comportement en vieillisse-

ment complexe, affectant toutes les échelles de longueur et de temps explorées. La

structure temporelle inhabituelle des corrélations observées peut être interprétée

dans le cadre du modèle “solide bloqué” comme liée à des avalanches de partic-

ules, qui relaxent les contraintes accumulées au cours du temps. Il est important

de souligner que les fonctions de corrélation régulières moyennées dans le temps,

typiquement utilisées dans ce type d’études, conduiraient inévitablement à des con-

clusions trompeuses si elles étaient appliquées à cette dynamique non stationnaire.

Il serait intéressant de continuer la recherche dans les directions indiquées

dans cette thèse. Construire un dispositif dédié permettant les expériences

sous écoulement, et l’utiliser pour étudier les suspensions collöıdales concentrées,

pourrait mener à une compréhension meilleure des influences réciproques entre

la dynamique et la rhéologie dans ces systèmes. Elargir la gamme des frac-

tions volumiques étudiées faciliterait la comparaison avec les théories et résultats

expérimentaux déjà existants. Une méthode d’analyse plus quantitative des fonc-

tions de corrélation à deux temps devrait être développée afin d’exploiter au mieux

leurs propriétés uniques.



Conclusions and outlook

The subject of this thesis project was to study the dynamic behaviour of a col-

loidal suspension of hard sphere particles. More specifically, the complex dynamics

at high particle volume fractions was targeted, with the goal of giving insight into

the phenomena of the observed dynamical arrest, not accompanied by any struc-

tural signature. The techniques employed included Small-Angle X-ray Scattering

(SAXS) and X-ray Photon Correlation Spectroscopy (XPCS), with the latter be-

ing for the first time applied to hard-sphere colloids at so high volume fractions

(0.5 . Φ . 0.6). The most important conclusion of this thesis is the observed

lack of the relaxation time divergence at concentrations near the MCT predicted

glass transition value (∼ 0.58). The volume fractions dependence of D0/DL(qm)

could be well modelled with the VFT form [Debenedetti 2001]. Together with the

observed change of shape of the intermediate scattering function to compressed ex-

ponential decay, this points towards a kinetic scenario of jamming rather than a

glass transition.

A combination of a simple flow device and XPCS demonstrated the possibility

of simultaneous measurements of both the diffusive dynamics and the advective

response to the applied shear. This technique, here applied to a dilute suspension,

would be very interesting to use with concentrated colloids which demonstrate non-

-Newtonian flow behaviour. Apart from the pure interest of studying the shear

and dynamic behaviour and their interplay, the flow of the sample during data

acquisition would also be a very practical way of avoiding radiation damage of

the sample. This is demonstrated in a qualitative manner in figure 5.26, which

shows the time evolution of SAXS patterns during a typical XPCS data series. The

data presented in the upper panel were acquired on a sample without any flow.

A systematic increase of intensity with time can be observed in the low q region,

indicating growth of particle clusters. This clearly changes when the sample is

flowing during the measurement, as depicted in the lower panel of figure 5.26, where

all the curves are the same. Radiation damage is avoided by constantly renewing the

sample. However, this method has its limitations. For XPCS the presence of flow

introduces a decorrelation mechanism additional to diffusion – the advective motion

of particles. If the characteristic time scales corresponding to these processes are

not well separated it may be impossible to distinguish them and draw any useful

conclusions about the dynamics of the scatterers. This is a valid problem in the

case of concentrated colloidal suspensions, where the dynamics becomes very slow.

Imposing a flow of the sample may then lead to a complete decorrelation of the

measured intermediate scattering function simply due to the translational motion

of the particles through the scattering volume. Such a measurement contains no

useful information. Technical limitations should also be considered – it may not be



93

2 3 4 5 6 7 8 9

100

101

I
(q
)
[c
p
s]

Q = 0 µl/h

0.63 s

1.91 s

3.21 s

4.51 s

5.81 s

7.11 s

8.41 s

9.71 s

11.01 s

12.31 s

2 3 4 5 6 7 8 9
qR

100

101

I
(q
)
[c
p
s]

Q = 10 µl/h

Figure 5.26: SAXS evolution during a measurement series taken with and without

flow.

feasible to apply a continuous flow slow enough to perform the experiment.

By utilizing the unique properties of a third generation synchrotron radiation

source and the fast, single photon counting MAXIPIX detector available at the

ID10 beamline of the European Synchrotron Radiation Facility (ESRF), it was

possible to measure the intermediate scattering functions in a range of scattering

vector values and sample concentrations not easily accessible for other techniques.

Sample volume fractions were determined by fitting the time- and azimuthally-

averaged radial profiles of the scattering pattern. The characteristic, two-step decay

of the intermediate scattering functions was observed. By representing the data in

the form of width functions the character of the relaxations could be determined
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without assuming an arbitrary model. In the short-time limit an exponential decay

could be seen for all sample concentrations in a wide q range. However, in the long

times an approximately exponential decay could be distinguished for each sample

only near q = qm. It persisted in higher q values only in the sample at highest Φ

probed (0.597).

An analysis of the limiting time scales extracted from the width functions with a

simple numerical procedure showed that the short-time diffusive regime is lost only

after several particle collisions. This is in conflict with the commonly accepted as-

sumption that a single encounter breaks the diffusive character of particle motion.

Possible influence of direct particle interactions even in the short-time regime is

consistent with the observed amplitudes of the hydrodynamic function H(q) being

significantly lower than predicted by extrapolating a model valid for lower concen-

trations.

The scaling between the normalized long-time diffusion coefficient and low-

shear-rate viscosity found by Segrè et al. [Segrè 1995b] was used to show a dis-

crepancy between the results obtained in this thesis and a model well describing

viscosity data of colloids at Φ . 0.5. The amplitudes of both normalized short-

and long-time diffusion coefficient were also shown to depart from the behaviour

predicted by the MCT.

We also tested the putative scaling of the short- and long-time diffusion coeffi-

cients, which ratio has been found to be q independent in a similar system of hard-

sphere particles [Segrè 1996]. The intermediate scattering functions normalized by

DS(q) were shown to approximately collapse for all volume fractions studied in this

thesis, but only upto the time which has been identified as the onset of long-time

diffusion. A plot of the DS(q)/DL(q) ratio vs qR shows important wavevector de-

pendence, particularly in the region of qm, where the long-time diffusion coefficient

is unambiguously identified. The variation with q becomes stronger with increasing

Φ, which does not exclude that the scaling may be valid for volume fractions lower

than the ones studied here.

A more detailed analysis of the correlation function measured for the most con-

centrated sample revealed that its shape can be well described by a compressed

exponential decay rather than a stretched one, typically observed for the α relax-

ation in glass-forming liquids [Debenedetti 2001]. After pointing to other examples

of such behaviour found in literature ([Cipelletti 2000, Czakkel 2011]) we postulate

that this observation remains well in line with the conclusion that the slowing down

of the dynamics is caused by a kinetic arrest and not glass transition.

Taking the advantage of the MEDPIX area detector we calculated two-time

correlation functions which revealed a complex ageing behaviour, affecting all length

and time scales probed The unusual time structure of the correlations observed can

be interpreted within the “jammed solid” model as particle avalanches, releasing

stress accumulated over time. It is important to stress that regular time averaged

correlation functions, typically employed in such studies, would inevitably lead to

misleading conclusions when applied to this non-stationary dynamics.

It would be interesting to continue the research in the directions pointed in
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this thesis. Building a dedicated sample environment enabling experiments under

flow and using it to study concentrated colloidal suspensions could lead to a better

understanding of the interplay between dynamics and rheology in these systems.

Broadening the range of volume fractions studied would facilitate the comparison

with existing experimental results and theories. A more quantitative method of

two-time correlation function analysis should be developed to exploit their unique

properties.
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