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We propose an analytical model for the statistical mechanics of shuffled two-dimensional foams with

moderate bubble size polydispersity. It predicts without any adjustable parameters the correlations

between the number of sides n of the bubbles (topology) and their areas A (geometry) observed in

experiments and numerical simulations of shuffled foams. Detailed statistics show that in shuffled cellular

patterns n correlates better with
ffiffiffiffi
A

p
(as claimed by Desch and Feltham) than with A (as claimed by Lewis

and widely assumed in the literature). At the level of the whole foam, standard deviations �n and �A are

in proportion. Possible applications include correlations of the detailed distributions of n and A, three-

dimensional foams, and biological tissues.

DOI: 10.1103/PhysRevLett.107.168304 PACS numbers: 83.80.Iz, 02.70.Rr

Cellular materials are interesting both as disordered
media with well-defined structural elements, and as models
for more complex systems such as biological tissues [1].
Among them, foams are ubiquitous in our daily lives and in
many industries [2–4]. Bubble monolayers are much easier
to observe and to study (Fig. 1). Such quasi-two-
dimensional foams are characterized by their number of
bubbles N, area distribution pðAÞ, and number-of-sides
distribution pðnÞ. Their bubbles are polygonal, with shapes
that are locally governed by Plateau’s laws [3,4]. Each side
is a thin liquid film with a uniform surface tension; its
curvature is determined by the difference of pressure be-
tween the two bubbles it separates.

Bubble size distribution and packing (or ‘‘topology’’)
are crucial in determining, e.g., rheological properties [4].
Statistically, a relatively large bubble, within a given foam
sample, has more neighbors than a smaller one. To quantify
this intuitive impression, bubbles which have the same
number n of neighbors can be grouped, and their normal-
ized average size plotted versus n. One debate [5–14]

concerns whether n correlates with A or
ffiffiffiffi
A

p
[Figs. 2(a)

and 2(b) and Eqs. (1) and (5)]. A second debate [10,11,13]
asks the following: can we understand these empirical
correlations, and prove them; what is their physical origin,
and why do they apply only to some cellular patterns? We
ask the same questions about empirical observation [15] of
proportionality between the geometrical disorder, or area

polydispersity, �A
hAi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihA2i � hAi2p
=hAi, and the topologi-

cal disorder, �nhni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihn2i � hni2p

=hni, where h:i denotes the
average over all bubbles in a foam and � the standard
deviation [Fig. 2(c)].

Existing models [2,8,10,11,16–19] seek distributions of
n and A which are optimal in some sense. This is relevant
at times long enough for pðAÞ to vary, e.g., under coars-
ening or bubble coalescence [2–4]. At shorter time scales,
N and pðAÞ are fixed: only the number of sides of the
bubbles varies, when they undergo ‘‘T1’’ neighbor
changes [Fig. 1(d)]. At most instants the foam is in a
local energy minimum, that is, a metastable state; each T1
is instantaneous and followed by a relaxation towards a
new local energy minimum [4]. Local minima have al-
most the same energy, and are separated by high energy
barriers corresponding to T1s [17]. There is no process
leading towards a global energy minimum. T1s instead
induce a random exploration of local minima, effectively
‘‘shuffling’’ the foam [15]. This notion of shuffling is
empirically defined [15,16] as having had enough T1s
per bubble to forget about the foam’s initial preparation.
Numerical simulations and theoretical analyses have
shown that cycles of shear of amplitude significantly
larger than the yield strain almost completely remove
(although seldom perfectly) both residual trapped stresses
and spurious correlations [20].
In the present Letter, we obtain, for shuffled foams of

moderate polydispersity, an analytical expression for the
distribution of n for any given distribution of A. We use a
grand-canonical description [21] with a constraint based
on mechanical equilibrium and space filling (the curva-
ture sum rule [2–4]) rather than on energy. Predictions
of geometry-topology correlations agree with shuffled
foam data obtained from existing experiments on liquid
foams [15] and new, refined, numerical simulations of two
sorts.
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In our experiments [Fig. 1(a)], a bubble monolayer of up
to N ¼ 2700 bubbles is confined at the air-water interface
by a glass plate [22]. The foam is enclosed in a 324 cm2

square with two parallel rigid boundaries (one fixed, one
driven by a motor) and two passive lateral boundaries
formed by a rubber band [23]. It can thus be deformed
into a parallelogram at constant area to apply pure shear
cycles with an amplitude much larger than the yield strain.
For details, see [15,23].

Potts model simulations [17,24] [Fig. 1(b)] are fast,
enabling us to scan a large range of disorders and accumu-
late statistics. They describe each bubble as a set of pixels,
as in experimental images. Initially, we distribute at ran-
dom N ¼ 112 nine-pixel bubble seeds on a 200� 200
pixel lattice. They are grown until they reach approxi-
mately the average bubble size hAi, chosen to be 400
pixels. They are then randomly assigned target areas
according to the desired area distribution. To shuffle the
foam, we choose the effective temperature, and thus the
amplitude of bubble side fluctuations, high enough that
T1s occur spontaneously [1]. The simulations are run for
2� 106 Monte Carlo steps (MCS), at which we checked
that �n=hni reaches a steady value.

Surface evolver (SE) [25] simulations represent each
side as an arc of a circle [Fig. 1(c)]; they provide detailed
information about each bubble’s position and shape. Each
foam is prepared from a Voronoi construction based on
seed points generated by a random Poisson point process
[26,27], with the bubble areas adjusted to fit the desired
area distribution where necessary, before convergence to
an energy minimum.We cyclically shear, by deforming the
shape of the periodic box, about 400 foams with N ¼ 2500
bubbles in two perpendicular directions with strain ampli-
tude 1.5.
In experiments and simulations we made bidisperse

foams, with the ratio of large to small bubble areas ranging
from 1 to 8, and polydisperse foams with normal (Potts),
Poisson (SE), or intermediate (experiments) distributions
of areas, with relative width �A=hAi ranging from
0 to 1.15.
The topology of the foam clearly depends on the relative

(and not absolute) bubble sizes. To enable comparisons
with simulations and theory, in what follows all data are
plotted as dimensionless. We first present averages �n over
individual bubbles. Figure 2(a) shows the intuitively ex-
pected increase of �n with the bubble size. Moreover, it

shows that all simulation data of �n vs
ffiffiffiffi
A

p
=h ffiffiffiffi

A
p i are

grouped, and display a linear variation, on a much wider
range than �n vs A=hAi. These ensemble averages require
that we bin together bubbles of similar sizes. In addition, in
SE simulations we track for each bubble the fluctuations of
nwith time (A being fixed) and check (not shown here) that
time averages yield exactly the same dependence of �n on A
as ensemble averages.
Second, representations of bubble sizes averaged over

bubbles of the same n, without binning, are easy to extract
from experiments or simulations, which probably explains
their prevalence in the literature [5–11]. Figure 2(b) shows

the intuitively expected increase of
ffiffiffiffi
A

p ðnÞ=h ffiffiffiffi
A

p i with n,
but here without obvious superposition of the data; plots

(not shown) with bubble perimeter P rather than
ffiffiffiffi
A

p
are

similar. The fit is linear; its slope is very different from the
inverse of the slope in Fig. 2(a), due to the statistical

character of the relationship between
ffiffiffiffi
A

p
(or A) and n [13].

Third, Fig. 2(c) shows measures of the foam’s disorder.
The topological disorder is proportional to the geometrical
one up to �0:4. At higher polydispersity, measures of
disorder are less correlated.
Our model for these data is based on the ideas intro-

duced in [21], which we now briefly recall. Each T1
keeps two quantities constant: the sum of n over the
four bubbles involved, and the sum of the four bubbles’
curvatures � [28]. A foam’s macrostate is thus defined by
its total curvature (summed over N bubbles) �tot ¼

P
�

and total number of sides Ns ¼
P

n. Within a macrostate,
the set of microstates is defined as the set of all accessible
local energy minima: we assume they all have the same
probability, and use a grand-canonical description:

1
3

4

2

2

4

3
1

T1

FIG. 1 (color online). Examples of shuffled foams.
(a) Experiment, after 10 shear cycles. (b) Potts model simulation,
after increasing the effective temperature. (c) Surface
evolver simulation, after 10 compression-extension cycles.
Monodisperse, bidisperse, and polydisperse foams are all gener-
ated in both experiments and simulations; only polydisperse
foams are shown here. (d) Sketch of a T1 event: bubbles 1 and 3
gain one side, bubbles 2 and 4 lose one; they also exchange some
curvature.
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consider one particular bubble of area A, the rest of the
foam constitutes a reservoir of sides and curvature, ex-
changed through T1s. We then use a mean field approxi-
mation, disregarding neighbor correlations and assuming
this reservoir foam is homogeneous and isotropic. The
probability for a bubble with size A to have n sides is

pAðnÞ ¼ �ðAÞ�1e���nðn�6Þ=ð3�e ffiffiffi
A

p Þþ�n, where �ðAÞ ¼P
n�3e

���nðn�6Þ=ð3�e ffiffiffi
A

p Þþ�n is the partition function of the

bubble. Here �e ¼ P=
ffiffiffiffi
A

p
is close to 3.72 for most bubbles

[17]; ��1 and ���1 are analogous to the ‘‘temperature’’
of the reservoir of curvature, and the ‘‘chemical poten-
tial’’ of the reservoir of sides, respectively. Their values
are unambiguously related to the mean values of �tot and
Ns through h�toti ¼ �@ ln�=@� and hNsi ¼ @ ln�=@�,
where � is the partition function of the entire foam,
defined through ln� ¼ N

R1
0 pðAÞ ln�ðAÞdA. For a very

large foam (N ! 1), the constraint of space filling sets
the values h�toti=N ! 0 and hNsi=N ! 6 [2,4,29]. This
(implicitly) relates the distribution of sides pðnÞ to the
distribution of sizes pðAÞ: pðnÞ ¼ R1

0 pðAÞpAðnÞdA [21].

Using the above ideas, we now derive analytical predic-
tions for � and �, applicable to a foam with small or
moderate polydispersity. We first note that pAðnÞ can be

rewritten as cðAÞe�ðn� �nðAÞÞ2=ð2�2Þ, where �nðAÞ ¼ 3þ
3 �e�

ffiffiffiffi
A

p
=ð2��Þ, �2 ¼ 3�e

ffiffiffiffi
A

p
=ð2��Þ, and cðAÞ ¼

�ðAÞ�1e�� �n2ðAÞ=ð3 �e ffiffiffi
A

p Þ. Thus pAðnÞ is a normal distribution.
It is truncated at n ¼ 3 (since there are no 1- or
2-sided bubbles [4]), but if it is narrow enough, � �
�nðAÞ � 3, we neglect the effect of such truncation on its

integral. We also treat n as a continuous rather than an
integer variable. We thus approximate �nðAÞ by the mean
number of sides of a bubble with area A. ThenR1
0 �nðAÞpðAÞdA is equal to hni ¼ 6, which implies

2����1= �e ¼ h ffiffiffiffi
A

p i. We thus predict and explain the linear
variation [12–14]:

�nðAÞ ’ 3

�
1þ

ffiffiffiffi
A

p

h ffiffiffiffi
A

p i
�
; (1)

which agrees with experimental and numerical data
[Fig. 2(a)].
To proceed, we obtain the values of � and � by

solving the system: @ ln�=@� ¼ 6N and @ ln�=
@� ¼ 0. Still assuming that n varies continuously from
�1 to 1, we approximate cðAÞ�1 by the integralR1
�1 e���ðn� �nðAÞÞ2=ð3�e ffiffiffi

A
p Þdn. We obtain the partition

function

�ðAÞ ¼ 1

cðAÞe
�� �n2ðAÞ=ð3�e ffiffiffi

A
p Þ ’ e�� �n2ðAÞ=ð3 �e ffiffiffi

A
p Þ

ffiffiffiffiffi
3�e

�

s
A1=4; (2)

and then solve for � and �:

��1 ¼ 6�

�e
ðhA�1=2i � hA1=2i�1Þ; (3)

��1 ¼ 3ðhA1=2ihA�1=2i � 1Þ: (4)

We can determine a posteriori the domain of validity of
neglecting the truncation in n. Using Eqs. (3) and (4), our

FIG. 2 (color online). Geometry-topology correlations. Purple diamonds: bulk shear experiment; filled black circles: Potts
simulations; open blue circles: surface evolver simulations. Lines are drawn over the expected range of validity. (a) Average number
of sides �n of a bubble vs its relative size

ffiffiffiffi
A

p
=h ffiffiffiffi

A
p i. Each foam contributes several points: two points for a bidisperse foam,

more dispersed points for a polydisperse foam. Green dashed line: linear fit, slope 3:03� 0:04, intercept 2:97� 0:04; solid red line:

Eq. (1). Inset: same data plotted vs A=hAi; solid red line: Eq. (5). (b) Desch-Feltham representation:
ffiffiffiffi
A

p
=h ffiffiffiffi

A
p i vs n [5–8]. Green dashed

line: linear fit, slope 0:19� 0:02, intercept �0:12� 0:03. Inset: Lewis representation, �A=hAi vs n [8–11]. (c) Topological vs
geometrical disorder. Each point represents a foam. Green dashed line: linear fit with zero intercept, slope 0:37� 0:03; solid red
line: Eq. (6).
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assumption � � �nðAÞ � 3 requires A1=2=hA1=2i �
hA1=2ihA�1=2i � 1. Thus, the criterion on the width of

pðAÞ is hA1=2ihA�1=2i � 1 � 1. It is more intuitive to
characterize the width of pðAÞ by its normalized standard

deviation �A
hAi . For that purpose, we change variable and use

the relative deviation " frommonodispersity [30], assumed
to be � 1: the condition of validity of this approximation,
and thus of Eq. (1), reduces to ð�A=hAiÞ2 � 4, and is thus
obeyed by both small and moderate dispersities.

Using the same change of variable, �nðAÞ can be ex-

pressed as a function of A [30], instead of
ffiffiffiffi
A

p
. For foams

with a small area dispersity (�A=hAi � 1) we can write

�nðAÞ ’ 3

2

�
3þ A

hAi
�
: (5)

The inset of Fig. 2(a) shows the linear variation predicted
by Eq. (5). Equations (1) and (5) are consistent. As ex-
pected, Eq. (1) has a range of validity larger than that of
Eq. (5): roughly A=hAi 2 ½0:16; 2:56� vs ½0:50; 1:50�. Note
that we have no simple prediction for the Desch-Feltham or
Lewis representation [Fig. 2(b)].

We can also calculate �n=hni, using hn2i ¼R1
0 pðAÞ�ðAÞ�1ð@2�=@�2ÞdA and Eq. (2). This

yields ð�n=hniÞ2 ¼ ½hA1=2ihA�1=2i þ hAihA1=2i�2 � 2�=4.
For shuffled foams with a moderate dispersity we
obtain [30]:

�n

hni 	 1

23=2
�A

hAi 	 0:35
�A

hAi : (6)

Despite the approximations involved in the analytical deri-
vation of Eq. (6), its prediction is indiscernible from the
linear fit to the data over the whole expected range, that is,
up to a geometrical disorder of 0.4 [Fig. 2(c)]. Note that the
agreement is better with experiments than numerics, espe-
cially at low disorder. We attribute this small discrepancy
to the lower number of bubbles in Potts simulations
(� 2500 bubbles for experiments and SE versus 112 for
Potts), and to the much lower value of the liquid fraction
for SE simulations (� 10�3 � 10�2 for Potts and experi-
ments versus�10�5 for SE [20]). At larger dispersities the
relation between�n=hni and �A=hAi depends on the exact
shapes of the area distributions: this explains the scatter in
the data.

In conclusion, in shuffled two-dimensional foams we
predict without any free parameter the correlation between

topology and geometry: n correlates better with
ffiffiffiffi
A

p
than

with A [Eq. (1)], and the two measures of disorder are
proportional [Eq. (6)]. Although the exact shape of the area
distribution plays a role in principle, we expect that in a
linear approximation its mean and width play the dominant
role. This is what our linear derivation captures. These
results should lead to a more accurate description of other
shuffled cellular patterns such as some biological tissues

and metallic grains, and of shuffling and ergodicity in soft
matter.
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