18 research outputs found

    A Combined CXCL10, CXCL8 and H-FABP Panel for the Staging of Human African Trypanosomiasis Patients

    Get PDF
    The actual serological and parasitological tests used for the diagnosis of human African trypanosomiasis (HAT), also known as sleeping sickness, are not sensitive and specific enough. The card agglutination test for trypanosomiasis (CATT) assay, widely used for the diagnosis, is restricted to the gambiense form of the disease, and parasitological detection in the blood and cerebrospinal fluid (CSF) is often very difficult. Another very important problem is the difficulty of staging the disease, a crucial step in the decision of the treatment to be given. While eflornithine is difficult to administer, melarsoprol is highly toxic with incidences of reactive encephalopathy as high as 20%. Staging, which could be diagnosed as early (stage 1) or late (stage 2), relies on the examination of CSF for the presence of parasite and/or white blood cell (WBC) counting. However, the parasite is rarely found in CSF and WBC count is not standardised (cutoff set between 5 and 20 WBC per µL). In the present study, we hypothesized that an early detection of stage 2 patients with one or several proteins in association with clinical evaluation and WBC count would improve staging accuracy and allow more appropriate therapeutic interventions

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Butterflies on the brink: identifying the Australian butterflies (Lepidoptera) most at risk of extinction

    No full text
    The diversity and abundance of native invertebrates is declining globally, which could have significant consequences for ecosystem functioning. Declines are likely to be at least as severe as those observed for vertebrates, although often are difficult to quantify due to a lack of historic baseline data and limited monitoring effort. The Lepidoptera are well studied in Australia compared with other invertebrates, so we know that some species are imperilled or declining. Despite this, few butterfly taxa are explicitly listed for protection by legislation. Here we aim to identify the butterfly taxa that would most benefit from listing by determining the Australian butterflies at most immediate risk of extinction. We also identify the research and management actions needed to retain them. For 26 taxa identified by experts and various conservation schedules, we used structured expert elicitation to estimate the probability of extinction within 20 years (i.e. by 2040) and to identify key threatening processes, priority research and management needs. Collation and analysis of expert opinion indicated that one taxon, the laced fritillary (Argynnis hyperbius inconstans), is particularly imperilled, and that four taxa (Jalmenus eubulus, Jalmenus aridus, Hypochrysops piceatus and Oreisplanus munionga larana) have a moderate–high (>30%) risk of extinction by 2040. Mapped distributions of the 26 butterflies revealed that most are endemic to a single state or territory, and that many occupy narrow ranges. Inappropriate fire regimes, habitat loss and fragmentation (through agricultural practices), invasive species (mostly through habitat degradation caused by weeds and rabbits) and climate change were the most prevalent threats affecting the taxa considered. Increased resourcing and management intervention will be required to prevent these extinctions. We provide specific recommendations for averting such losses

    The prognostic and predictive value of sstr2-immunohistochemistry and sstr2-targeted imaging in neuroendocrine tumors.

    Get PDF
    PURPOSE Our aim was to assess the prognostic and predictive value of somatostatin receptor 2 (sstr2) in neuroendocrine tumors (NETs). METHODS We established a tissue microarray and imaging database from NET patients that received sstr2-targeted radiopeptide therapy with yttrium-90-DOTATOC, lutetium-177-DOTATOC or alternative treatment. We used univariate and multivariate analyses to identify prognostic and predictive markers for overall survival, including sstr2-imaging and sstr2-immunohistochemistry. RESULTS We included a total of 279 patients. In these patients, sstr2-immunohistochemistry was an independent prognostic marker for overall survival (HR: 0.82, 95 % CI: 0.67 - 0.99, n = 279, p = 0.037). In DOTATOC patients, sstr2-expression on immunohistochemistry correlated with tumor uptake on sstr2-imaging (n = 170, p < 0.001); however, sstr2-imaging showed a higher prognostic accuracy (positive predictive value: +27 %, 95 % CI: 3 - 56 %, p = 0.025). Sstr2-expression did not predict a benefit of DOTATOC over alternative treatment (p = 0.93). CONCLUSIONS Our results suggest sstr2 as an independent prognostic marker in NETs. Sstr2-immunohistochemistry correlates with sstr2-imaging; however, sstr2-imaging is more accurate for determining the individual prognosis
    corecore