10 research outputs found

    Mapeamento de óxidos de ferro usando imagens landsat-8/OLI e EO-1/hyperion nos depósitos ferríferos da Serra Norte, província mineral de Carajás, Brasil

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOMapping methods for iron oxides and clay minerals, using Landsat-8/Operational Land Imager (OLI) and Earth Observing 1 (EO-1)/Hyperion imagery integrated with airborne geophysical data, were applied in the N4, N5, and N4WS iron deposits, Serra Norte, Carajás, Brazil. Band ratios were achieved on Landsat-8/OLI imagery, allowing the recognition of the main minerals from iron deposits. The Landsat-8/OLI imagery showed a robust performance for iron oxide exploration, even in vegetated shrub areas. Feature extraction and Spectral Angle Mapper hyperspectral classification methods were carried out on EO-1/Hyperion imagery with good results for mapping high-grade iron ore, the hematite-goethite ratio, and clay minerals from regolith. The EO-1/Hyperion imagery proved an excellent tool for fast remote mineral mapping in open-pit areas, as well as mapping waste and tailing disposal facilities. An unsupervised classification was carried out on a data set consisting of EO-1/Hyperion visible near-infrared 74 bands, Landsat-8/OLI-derived Normalized Difference Vegetation Index, Laser Imaging Detection and Ranging-derived Digital Terrain Model, and high-resolution airborne geophysical data (gamma ray spectrometry, Tzz component of gradiometric gravimetry data). This multisource classification proved to be an adequate alternative for mapping iron oxides in vegetated shrub areas and to enhance the geology of the regolith and mineralized areas463331349FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOsem informação307177/2014-9Métodos de mapeamento para óxidos de ferro e argilas, aplicados em imagens Landsat-8/Operational Land Imager (OLI) e Earth Observing 1 (EO-1)/Hyperion e integrados com dados aerogeofísicos, foram testados nos depósitos de ferro de N4, N5 e N4WS, Serra Norte, Carajás, Brasil. Razões de banda foram aplicadas à imagem Landsat-8/OLI, identificando os principais minerais dos depósitos de ferro de N4 e N5. As imagens Landsat-8/OLI mostraram um bom desempenho para a exploração de óxido de ferro, mesmo em áreas vegetadas. Extração de feições espectrais e o método de classificação hiperespectral Spectral Angle Mapper foram aplicados na imagem EO-1/Hyperion com bons resultados para o mapeamento de minério de ferro de alto teor, bem como da proporção de hematita-goethita do minério e de argilas nos regolitos. A imagem EO-1/Hyperion provou ser uma excelente ferramenta para o mapeamento remoto de minerais em áreas de mina a céu aberto, bem como no mapeamento das pilhas de minério. Uma classificação não supervisionada foi aplicada a dados de 74 bandas do visível e infravermelho próximo do EO-1/Hyperion, índice Normalized Difference Vegetation Index derivado do Landsat-8/OLI, Modelo Digital do Terreno derivado do Laser Imaging Detection and Ranging, e dados aerogeofísicos (gamaespectrometria e componente Tzz do dado gravimétrico gradiométrico). Essa classificação de dados multifonte mostrou ser uma alternativa para mapeamento de óxidos de ferro em áreas vegetadas, bem como da geologia do regolito e das áreas mineralizada

    Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil

    Get PDF
    Métodos de mapeamento para óxidos de ferro e argilas, aplicados em imagens Landsat-8/Operational Land Imager (OLI) e Earth Observing 1 (EO-1)/Hyperion e integrados com dados aerogeofísicos, foram testados nos depósitos de ferro de N4, N5 e N4WS, Serra Norte, Carajás, Brasil. Razões de banda foram aplicadas à imagem Landsat-8/OLI, identificando os principais minerais dos depósitos de ferro de N4 e N5. As imagens Landsat-8/OLI mostraram um bom desempenho para a exploração de óxido de ferro, mesmo em áreas vegetadas. Extração de feições espectrais e o método de classificação hiperespectral Spectral Angle Mapper foram aplicados na imagem EO-1/Hyperion com bons resultados para o mapeamento de minério de ferro de alto teor, bem como da proporção de hematita-goethita do minério e de argilas nos regolitos. A imagem EO-1/Hyperion provou ser uma excelente ferramenta para o mapeamento remoto de minerais em áreas de mina a céu aberto, bem como no mapeamento das pilhas de minério. Uma classificação não supervisionada foi aplicada a dados de 74 bandas do visível e infravermelho próximo do EO-1/Hyperion, índice Normalized Difference Vegetation Index derivado do Landsat-8/OLI, Modelo Digital do Terreno derivado do Laser Imaging Detection and Ranging, e dados aerogeofísicos (gamaespectrometria e componente Tzz do dado gravimétrico gradiométrico). Essa classificação de dados multifonte mostrou ser uma alternativa para mapeamento de óxidos de ferro em áreas vegetadas, bem como da geologia do regolito e das áreas mineralizadas.Mapping methods for iron oxides and clay minerals, using Landsat-8/Operational Land Imager (OLI) and Earth Observing 1 (EO-1)/Hyperion imagery integrated with airborne geophysical data, were applied in the N4, N5, and N4WS iron deposits, Serra Norte, Carajás, Brazil. Band ratios were achieved on Landsat-8/OLI imagery, allowing the recognition of the main minerals from iron deposits. The Landsat-8/OLI imagery showed a robust performance for iron oxide exploration, even in vegetated shrub areas. Feature extraction and Spectral Angle Mapper hyperspectral classification methods were carried out on EO-1/Hyperion imagery with good results for mapping high-grade iron ore, the hematite-goethite ratio, and clay minerals from regolith. The EO-1/Hyperion imagery proved an excellent tool for fast remote mineral mapping in open-pit areas, as well as mapping waste and tailing disposal facilities. An unsupervised classification was carried out on a data set consisting of EO-1/Hyperion visible near-infrared 74 bands, Landsat-8/OLI-derived Normalized Difference Vegetation Index, Laser Imaging Detection and Ranging-derived Digital Terrain Model, and high-resolution airborne geophysical data (gamma ray spectrometry, Tzz component of gradiometric gravimetry data). This multisource classification proved to be an adequate alternative for mapping iron oxides in vegetated shrub areas and to enhance the geology of the regolith and mineralized areas

    Hyperspectral remote sensing applied to mineral exploration in southern Peru: A multiple data integration approach in the Chapi Chiara gold prospect

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICORemote sensing is a strategic key tool for mineral exploration, due to its capacity of detecting hydrothermal alteration minerals or alteration mineral zones associated with different types of mineralization systems. A case study of an epithermal system l64287300FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2011/00106-8,141174/2011-

    Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil

    No full text
    ABSTRACT: Mapping methods for iron oxides and clay minerals, using Landsat-8/Operational Land Imager (OLI) and Earth Observing 1 (EO-1)/Hyperion imagery integrated with airborne geophysical data, were applied in the N4, N5, and N4WS iron deposits, Serra Norte, Carajás, Brazil. Band ratios were achieved on Landsat-8/OLI imagery, allowing the recognition of the main minerals from iron deposits. The Landsat-8/OLI imagery showed a robust performance for iron oxide exploration, even in vegetated shrub areas. Feature extraction and Spectral Angle Mapper hyperspectral classification methods were carried out on EO-1/Hyperion imagery with good results for mapping high-grade iron ore, the hematite-goethite ratio, and clay minerals from regolith. The EO-1/Hyperion imagery proved an excellent tool for fast remote mineral mapping in open-pit areas, as well as mapping waste and tailing disposal facilities. An unsupervised classification was carried out on a data set consisting of EO-1/Hyperion visible near-infrared 74 bands, Landsat-8/OLI-derived Normalized Difference Vegetation Index, Laser Imaging Detection and Ranging-derived Digital Terrain Model, and high-resolution airborne geophysical data (gamma ray spectrometry, Tzz component of gradiometric gravimetry data). This multisource classification proved to be an adequate alternative for mapping iron oxides in vegetated shrub areas and to enhance the geology of the regolith and mineralized areas

    Characterization of the crystallographic preferred orientation relationships of the magnetite-hematite-goethite phase transformation during martitization

    No full text
    The most frequent crystallographic preferred orientations developed during the progressive phase transformation of magnetite-hematite-goethite are described and analyzed in two natural samples of banded iron formations from Carajás Mineral Province. Microtextures of martitized grains containing the three phases and the microplaty matrix were analyzed in a scanning electron microscope equipped with a detector for electron backscatter diffraction. For identifying the correlation between magnetite, hematite and goethite lattice and topotaxity during transformation, multiple orientation relationships between the three phases were tested and verified using three-dimensional misorientation analysis. The results show that basal planes of goethite coincide with basal planes of hematite, which coincide with octahedral planes of magnetite. This indicates that transformation between the three minerals happens topotactically, and the oxygen lattice framework is preserved in all members of the reaction as a form of crystallographic memory. As a result of progressive and cyclical changes in oxidation/reduction conditions, an assemblage of high-order orientation relationships is observed and assigned to a complex process of transformation twinning in-between phase transformation of magnetite, hematite and goethite. In the N4WS iron ore deposit, iron oxides/hydroxides from martitized grains work as susceptible markers of environmental changes still in solid state during the diagenetic process.Instituto de Geociências (IG

    Characterization of the Crystallographic Preferred Orientation Relationships of the Magnetite-Hematite-Goethite Phase Transformation during Martitization

    No full text
    The most frequent crystallographic preferred orientations developed during the progressive phase transformation of magnetite-hematite-goethite are described and analyzed in two natural samples of banded iron formations from Carajás Mineral Province. Microtextures of martitized grains containing the three phases and the microplaty matrix were analyzed in a scanning electron microscope equipped with a detector for electron backscatter diffraction. For identifying the correlation between magnetite, hematite and goethite lattice and topotaxity during transformation, multiple orientation relationships between the three phases were tested and verified using three-dimensional misorientation analysis. The results show that basal planes of goethite coincide with basal planes of hematite, which coincide with octahedral planes of magnetite. This indicates that transformation between the three minerals happens topotactically, and the oxygen lattice framework is preserved in all members of the reaction as a form of crystallographic memory. As a result of progressive and cyclical changes in oxidation/reduction conditions, an assemblage of high-order orientation relationships is observed and assigned to a complex process of transformation twinning in-between phase transformation of magnetite, hematite and goethite. In the N4WS iron ore deposit, iron oxides/hydroxides from martitized grains work as susceptible markers of environmental changes still in solid state during the diagenetic process

    Characterization of the Crystallographic Preferred Orientation Relationships of the Magnetite-Hematite-Goethite Phase Transformation during Martitization

    No full text
    The most frequent crystallographic preferred orientations developed during the progressive phase transformation of magnetite-hematite-goethite are described and analyzed in two natural samples of banded iron formations from Carajás Mineral Province. Microtextures of martitized grains containing the three phases and the microplaty matrix were analyzed in a scanning electron microscope equipped with a detector for electron backscatter diffraction. For identifying the correlation between magnetite, hematite and goethite lattice and topotaxity during transformation, multiple orientation relationships between the three phases were tested and verified using three-dimensional misorientation analysis. The results show that basal planes of goethite coincide with basal planes of hematite, which coincide with octahedral planes of magnetite. This indicates that transformation between the three minerals happens topotactically, and the oxygen lattice framework is preserved in all members of the reaction as a form of crystallographic memory. As a result of progressive and cyclical changes in oxidation/reduction conditions, an assemblage of high-order orientation relationships is observed and assigned to a complex process of transformation twinning in-between phase transformation of magnetite, hematite and goethite. In the N4WS iron ore deposit, iron oxides/hydroxides from martitized grains work as susceptible markers of environmental changes still in solid state during the diagenetic process

    The hydrothermal footprint of the Crixas deposit : new vectors for orogenic gold exploration in central Brazil

    No full text
    The main gold deposits of the Archaean-Paleoproterozoic Terrain of Goiás, in central Brazil, occur in the Crixás Greenstone Belt, one of the five volcanosedimentary sequences of this terrain. The Crixás orogenic gold deposit consists of several orebodies structurally controlled by low to moderate angle thrust faults, hosted in different stratigraphic units that exhibit contrasting mineralization styles and hydrothermal alteration assemblages. This study characterizes the hydrothermal footprints of the Palmeiras Structure and Structure IV, which control the orebodies hosted in the hydrothermally-altered mafic metavolcanic rocks and carbonaceous schists, respectively. We assessed the magnitude of fluid-rock interactions by integrating mineralogical, geochemical, and petrophysical data with the reflectance spectroscopy results for drill core samples for both structures. The Palmeiras Structure hydrothermal footprint is characterized by a distal halo composed of Fe-Mg chlorite + biotite ± carbonates (calcite and Fe dolomite), followed by the intermediate halo defined by epidote + carbonates (dolomite, Fe dolomite, and ankerite) ± Fe-Mg chlorite, and proximal halo composed of muscovite + Feenriched chlorite ± paragonite, magnetite, tourmaline, Fe dolomite, and ankerite. Additionally, the chemical pattern of the hydrothermal alteration along the Palmeiras Structure has significantly increased concentrations of alkali (K2O, Na2O, Rb, Cs, Li, and Ba), as well as Fe2O3, Al2O3, TiO2, LOI, U, W, Th, and Ta towards the gold mineralization. Also, the high magnetite concentration resulted in high magnetic susceptibility and density, with values above 1432.00×10–3 SI. In Structure IV, the proximal alteration assemblage comprises muscovite + Fe dolomite, Fe-Mg chlorite + arsenopyrite. The lithogeochemical signature is characterized by enrichment in SiO2, CaO, Na2O, K2O, P, Ba, and pathfinder elements As, W, Sb, Te, that increase towards the gold mineralization. A new potential target hosted in the hydrothermalized metabasalt was identified, whose signature is defined by the occurrence of muscovite, chlorite and enrichment in K2O, Ba, Rb, Li Cs and pathfinder elements such as As, W, Sb, Te. This study demonstrates that the integrated application of reflectance spectroscopy, petrophysics and chemical analyses provide a powerful tool for characterizing the hydrothermal footprint and determining the vectors toward gold mineralization in regional-scale mineral exploration.Instituto de Geociências (IG

    New near-mine prospecting approach using multivariate analysis and reflectance spectroscopy to define surface footprint: A case study of the Pequizão Gold Deposit, Crixás Greenstone Belt, Central Brazil

    No full text
    The Pequizão gold deposit in the Crixás greenstone belt, central Brazil, is structurally-controlled mineralization hosted mainly in carbonaceous phyllite with pervasive hydrothermalized zones and large amounts of disseminated sulfides and gold. Usually, regoliths of Au deposits are either unstudied or understudied in exploration surveys because of lower Au content and the difficulty and complexity of soil profiles. However, such investi gation can be beneficial in brownfield exploration to assess larger areas than drilling. In this work, results of clustering and machine learning of soil geochemistry and reflectance spectroscopy integrated with a multivariate approach to determine soil footprints and to target new deposits in the surface of the Crixás greenstone belt. Reflectance spectroscopy was applied in 939 soil samples and is a valuable tool in mineral exploration for an immediate investigation of mineral assemblage from the target. It was calibrated with X-ray diffraction, geochemical, and multivariate approaches providing consistent vectors toward mineralization, with Pequizão soil samples developing gibbsite and phengitic-white mica as minerals related to mineralized samples. Multi variate analysis reveals that the deposit has a typical orogenic gold deposit chemical signature. Principal components and factor analysis first defined samples derived from carbonaceous phyllite and dolomite as the main ore hosts. The chemical aspects of hydrothermal alteration are As, Ag, Te, Ca, and Mg, with enrichment of Sb, V, Na, Ba, and W and depletion of Zn, Ga, and Pb that, according to ensemble learning, they have significant importance in the detection of gold. Understanding surface footprints of known deposits can be an exploratory guide for finding new soil geochemical halos related to mineralization zones. The research revealed new asso ciations of minerals and chemical elements that can be determined as exploration vectors. It was possible to clarify further the knowledge about the footprint of mineralization in soil. Combining the soil-related methods applied in this study and a broad-coverage spectral approach in soil and drill cores can enhance success in prospecting in brownfield areas and expand to greenfields.Instituto de Geociências (IG)Programa de Pós-Graduação em Geologi
    corecore