233 research outputs found

    Exploring the fatty acid amide hydrolase and cyclooxygenase inhibitory properties of novel amide derivatives of ibuprofen

    Get PDF
    Inhibition of fatty acid amide hydrolase (FAAH) reduces the gastrointestinal damage produced by non-steroidal anti-inflammatory agents such as sulindac and indomethacin in experimental animals, suggesting that a dual-action FAAH-cyclooxygenase (COX) inhibitor could have useful therapeutic properties. Here, we have investigated 12 novel amide analogues of ibuprofen as potential dual-action FAAH/COX inhibitors. N-(3-Bromopyridin-2-yl)−2-(4-isobutylphenyl)propanamide (Ibu-AM68) was found to inhibit the hydrolysis of [3H]anandamide by rat brain homogenates by a reversible, mixed-type mechanism of inhibition with a Ki value of 0.26 ”M and an α value of 4.9. At a concentration of 10 ”M, the compound did not inhibit the cyclooxygenation of arachidonic acid by either ovine COX-1 or human recombinant COX-2. However, this concentration of Ibu-AM68 greatly reduced the ability of the COX-2 to catalyse the cyclooxygenation of the endocannabinoid 2-arachidonoylglycerol. It is concluded that Ibu-AM68 is a dual-acting FAAH/substrate-selective COX inhibitor

    Design and pharmacological evaluation of Ibuprofen amides derivatives as dual FAAH/COX inhibitors

    Get PDF
    Fatty acid amide hydrolase (FAAH) is a serine hydrolase enzyme responsible of the hydrolytic degradation of N-acylethanolamine endocannabinoids, such as the Arachidonoylethanolamide (anandamide, AEA), which it has been shown to alleviate pain and inflammation (1). In particular, the anti-nociceptive and anti-inflammatory effects of AEA could be enhanced by the simultaneous block of FAAH and COX enzymes (2). For this reason, several studies have been carried out in order to develop new FAAH/COX inhibitors (2). In 1997 it was reported that the NSAID ibuprofen inhibited FAAH, although with a modest potency (3), and successively the first dual inibhitor, the amide derivative of ibuprofen with a 2-amino-3-methylpyridine side chain (Ibu-AM5) was reported (4). -5). Benzylamides and piperazinoamides analogs of Ibuprofen have been also designed as less potent FAAH inhibitors than Ibu-AM5 (5). Here, I discuss the computational studies and the structure–activity relationships leading to the design, of novel Ibuprofen amide derivatives with a higher inhibition potency of FAAH and COX, which represent novel powerful anti-nociceptive agents

    Effects of high-flow nasal cannula in patients with persistent hypercapnia after an acute COPD exacerbation: A prospective pilot study

    Get PDF
    Background: Persistent hypercapnia after COPD exacerbation is associated with excess mortality and early rehospitalization. High Flow Nasal cannula (HFNC), may be theoretically an alternative to long-term noninvasive ventilation (NIV), since physiological studies have shown a reduction in PaCO2 level after few hours of treatment. In this clinical study we assessed the acceptability of HFNC and its effectiveness in reducing the level of PaCO2 in patients recovering from an Acute Hypercapnic Respiratory Failure (AHRF) episode. We also hypothesized that the response in CO2 clearance is dependent on baseline level of hypercapnia. Methods: Fifty COPD patients recovering from an acute exacerbation and with persistent hypercapnia, despite having attained a stable pH (i.e. pH > 7,35 and PaCO2 > 45 mmHg on 3 consecutive measurements), were enrolled and treated with HFNC for at least 8 h/day and during the nighttime Results: HFNC was well tolerated with a global tolerance score of 4.0 \ub1 0.9. When patients were separated into groups with or without COPD/OSA overlap syndrome, the "pure" COPD patients showed a statistically significant response in terms of PaCO2 decrease (p = 0.044). In addition, the subset of patients with a lower pH at enrolment were those who responded best in terms of CO2 clearance (score test for trend of odds, p = 0.0038). Conclusions: HFNC is able to significantly decrease the level of PaCO2 after 72 h only in "pure" COPD patients, recovering from AHRF. No effects in terms of CO2 reduction were found in those with overlap syndrome. The present findings will help guide selection of the best target population and allow a sample size calculation for future long-term randomized control trials of HFNC vs NIV

    Design, synthesis and in vitro and in vivo biological evaluation of flurbiprofen amides as new fatty acid amide hydrolase/cyclooxygenase-2 dual inhibitory potential analgesic agents

    Get PDF
    Compounds combining dual inhibitory action against FAAH and cyclooxygenase (COX) may be potentially useful analgesics. Here, we describe a novel flurbiprofen analogue, N-(3-bromopyridin-2-yl)-2-(2-fluoro-(1,1'-biphenyl)-4-yl)propanamide (Flu-AM4). The compound is a competitive, reversible inhibitor of FAAH with a Ki value of 13 nM and which inhibits COX activity in a substrate-selective manner. Molecular modelling suggested that Flu-AM4 optimally fits a hydrophobic pocket in the ACB region of FAAH, and binds to COX-2 similarly to flurbiprofen. In vivo studies indicated that at a dose of 10 mg/kg, Flu-AM4 was active in models of prolonged (formalin) and neuropathic (chronic constriction injury) pain and reduced the spinal expression of iNOS, COX-2, and NFÎșB in the neuropathic model. Thus, the present study identifies Flu-AM4 as a dual-action FAAH/substrate-selective COX inhibitor with anti-inflammatory and analgesic activity in animal pain models. These findings underscore the potential usefulness of such dual-action compounds

    Hijacking SARS-CoV-2/ACE2 Receptor Interaction by Natural and Semi-synthetic Steroidal Agents Acting on Functional Pockets on the Receptor Binding Domain

    Get PDF
    The coronavirus disease 2019 (COVID-19) is a respiratory tract infection caused by the severe acute respiratory syndrome coronavirus (SARS)-CoV-2. In light of the urgent need to identify novel approaches to be used in the emergency phase, we have embarked on an exploratory campaign aimed at repurposing natural substances and clinically available drugs as potential anti-SARS-CoV2-2 agents by targeting viral proteins. Here we report on a strategy based on the virtual screening of druggable pockets located in the central ÎČ-sheet core of the SARS-CoV-2 Spike's protein receptor binding domain (RBD). By combining an in silico approach and molecular in vitro testing we have been able to identify several triterpenoid/steroidal agents that inhibit interaction of the Spike RBD with the carboxypeptidase domain of the Angiotensin Converting Enzyme (ACE2). In detail, we provide evidence that potential binding sites exist in the RBD of the SARS CoV-2 Spike protein and that occupancy of these pockets reduces the ability of the RBD to bind to the ACE2 consensus in vitro. Naturally occurring and clinically available triterpenoids such as glycyrrhetinic and oleanolic acids, as well as primary and secondary bile acids and their amidated derivatives such as glyco-ursodeoxycholic acid and semi-synthetic derivatives such as obeticholic acid reduces the RBD/ACE2 binding. In aggregate, these results might help to define novel approaches to COVID-19 based on SARS-CoV-2 entry inhibitors

    Exploring the DNA2-PNA heterotriplex formation in targeting the Bcl-2 gene promoter: A structural insight by physico-chemical and microsecond-scale MD investigation

    Get PDF
    Peptide Nucleic Acids (PNAs) represent a promising tool for gene modulation in anticancer treatment. The uncharged peptidyl backbone and the resistance to chemical and enzymatic degradation make PNAs highly advantageous to form stable hybrid complexes with complementary DNA and RNA strands, providing higher stability than the corresponding natural analogues. Our and other groups’ research has successfully shown that tailored PNA sequences can effectively downregulate the expression of human oncogenes using antigene, antisense, or anti-miRNA approaches. Specifically, we identified a seven bases-long PNA sequence, complementary to the longer loop of the main G-quadruplex structure formed by the bcl2midG4 promoter sequence, capable of downregulating the expression of the antiapoptotic Bcl-2 protein and enhancing the anticancer activity of an oncolytic adenovirus. Here, we extended the length of the PNA probe with the aim of including the double-stranded Bcl-2 promoter among the targets of the PNA probe. Our investigation primarily focused on the structural aspects of the resulting DNA2-PNA heterotriplex that were determined by employing conventional and accelerated microsecond-scale molecular dynamics simulations and chemical-physical analysis. Additionally, we conducted preliminary biological experiments using cytotoxicity assays on human A549 and MDA-MB-436 adenocarcinoma cell lines, employing the oncolytic adenovirus delivery strategy

    INFN Camera demonstrator for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array is a world-wide project for a new generation of ground-based Cherenkov telescopes of the Imaging class with the aim of exploring the highest energy region of the electromagnetic spectrum. With two planned arrays, one for each hemisphere, it will guarantee a good sky coverage in the energy range from a few tens of GeV to hundreds of TeV, with improved angular resolution and a sensitivity in the TeV energy region better by one order of magnitude than the currently operating arrays. In order to cover this wide energy range, three different telescope types are envisaged, with different mirror sizes and focal plane features. In particular, for the highest energies a possible design is a dual-mirror Schwarzschild-Couder optical scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based camera is being proposed as a solution to match the dimensions of the pixel (angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer, self-trigger and on-demand digitization capabilities specifically developed for this purpose. The pixel dimensions of 6×66\times6 mm2^2 lead to a very compact design with challenging problems of thermal dissipation. A modular structure, made by copper frames hosting one PSM and the corresponding FEE, has been conceived, with a water cooling system to keep the required working temperature. The actual design, the adopted technical solutions and the achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Results from the first use of low radioactivity argon in a dark matter search

    Get PDF
    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10^3 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data, accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43 cm^2) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2).Comment: Accepted by Phys. Rev.

    Measurement of the cosmic ray antiproton/proton flux ratio at TeV energies with the ARGO-YBJ detector

    Get PDF
    Cosmic ray antiprotons provide an important probe to study the cosmic ray propagation in the interstellar space and to investigate the existence of dark matter. Acting the Earth-Moon system as a magnetic spectrometer, paths of primary antiprotons are deflected in the opposite sense with respect to those of the protons in their way to the Earth. This effect allows, in principle, the search for antiparticles in the direction opposite to the observed deficit of cosmic rays due to the Moon (the so-called `Moon shadow'). The ARGO-YBJ experiment, located at the Yangbajing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm2^2), is particularly effective in measuring the cosmic ray antimatter content via the observation of the cosmic rays shadowing effect due to: (1) good angular resolution, pointing accuracy and long-term stability; (2) low energy threshold; (3) real sensitivity to the geomagnetic field. Based on all the data recorded during the period from July 2006 through November 2009 and on a full Monte Carlo simulation, we searched for the existence of the shadow cast by antiprotons in the TeV energy region. No evidence of the existence of antiprotons is found in this energy region. Upper limits to the pˉ/p\bar{p}/p flux ratio are set to 5 % at a median energy of 1.4 TeV and 6 % at 5 TeV with a confidence level of 90%. In the TeV energy range these limits are the lowest available.Comment: Contact authors: G. Di Sciascio ([email protected]) and R. Iuppa ([email protected]), INFN Sezione di Roma Tor Vergata, Roma, Ital

    An Optimized, Chemically Regulated Gene Expression System for Chlamydomonas

    Get PDF
    BACKGROUND: Chlamydomonas reinhardtii is a model system for algal and cell biology and is used for biotechnological applications, such as molecular farming or biological hydrogen production. The Chlamydomonas metal-responsive CYC6 promoter is repressed by copper and induced by nickel ions. However, induction by nickel is weak in some strains, poorly reversible by chelating agents like EDTA, and causes, at high concentrations, toxicity side effects on Chlamydomonas growth. Removal of these bottlenecks will encourage the wide use of this promoter as a chemically regulated gene expression system. METHODOLOGY: Using a codon-optimized Renilla luciferase as a reporter gene, we explored several strategies to improve the strength and reversibility of CYC6 promoter induction. Use of the first intron of the RBCS2 gene or of a modified TAP medium increases the strength of CYC6 induction up to 20-fold. In the modified medium, induction is also obtained after addition of specific copper chelators, like TETA. At low concentrations (up to 10 microM) TETA is a more efficient inducer than Ni, which becomes a very efficient inducer at higher concentrations (50 microM). Neither TETA nor Ni show toxicity effects at the concentrations used. Unlike induction by Ni, induction by TETA is completely reversible by micromolar copper concentrations, thus resulting in a transient "wave" in luciferase activity, which can be repeated in subsequent growth cycles. CONCLUSIONS: We have worked out a chemically regulated gene expression system that can be finely tuned to produce temporally controlled "waves" in gene expression. The use of cassettes containing the CYC6 promoter, and of modified growth media, is a reliable and economically sustainable system for the temporally controlled expression of foreign genes in Chlamydomonas
    • 

    corecore