25 research outputs found

    Cancer Predisposition Genes in Cancer-Free Families

    Get PDF
    Familial clustering, twin concordance, and identification of high- and low-penetrance cancer predisposition variants support the idea that there are families that are at a high to moderate excess risk of cancer. To what extent there may be families that are protected from cancer is unknown. We wanted to test genetically whether cancer-free families share fewer breast, colorectal, and prostate cancer risk alleles than the population at large. We addressed this question by whole-genome sequencing (WGS) of 51 elderly cancer-free individuals whose numerous (ca. 1000) family members were found to be cancer-free ('cancer-free families', CFFs) based on face-to-face interviews. The average coverage of the 51 samples in the WGS was 42x. We compared cancer risk allele frequencies in cancer-free individuals with those in the general population available in public databases. The CFF members had fewer loss-of-function variants in suggested cancer predisposition genes compared to the ExAC data, and for high-risk cancer predisposition genes, no pathogenic variants were found in CFFs. For common low-penetrance breast, colorectal, and prostate cancer risk alleles, the results were not conclusive. The results suggest that, in line with twin and family studies, random environmental causes are so dominant that a clear demarcation of cancer-free populations using genetic data may not be feasible.</p

    Characterization of rare germline variants in familial multiple myeloma

    Get PDF
    Multiple myeloma (MM) is a malignancy of plasma cells, characterized by the presence of monoclonal immunoglobulin, known as M protein1. MM is preceded by monoclonal gammopathy of undetermined significance (MGUS) which is also a precursor of immunoglobulin light chain (AL) amyloidosis. Previous studies have reported a 2- to 4-fold increased risk of MGUS or MM in first-degree relatives of MM or MGUS patients, suggesting the existence of inherited susceptibility. For many years, high-risk germline predisposing genes have been lacking for MM. However, recent sequencing efforts have proposed a few novel candidates, most notably loss-offunction (LoF) variants in the tumor suppressor gene DIS3 and in the histone demethylase gene KDM1A, and others as recently reviewed in detail in Pertesi et al. In addition to the suspected rare, high-penetrance variants, genome-wide association studies have identified over 20 common, low-penetrance variants associated with the risk of MM; these were estimated to account for about 15% of the familial MM risk

    Association of NLRP1 Coding Polymorphism with Lung Function and Serum IL-1β Concentration in Patients Diagnosed with Chronic Obstructive Pulmonary Disease (COPD)

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a chronic disease characterized by a progressive decline in lung function due to airflow limitation, mainly related to IL-1β-induced inflammation. We have hypothesized that single nucleotide polymorphisms (SNPs) in NLRP genes, coding for key regulators of IL-1β, are associated with pathogenesis and clinical phenotypes of COPD. We recruited 704 COPD individuals and 1238 healthy controls for this study. Twenty non-synonymous SNPs in 10 different NLRP genes were genotyped. Genetic associations were estimated using logistic regression, adjusting for age, gender, and smoking history. The impact of genotypes on patients’ overall survival was analyzed with the Kaplan–Meier method with the log-rank test. Serum IL-1β concentration was determined by high sensitivity assay and expression analysis was done by RT-PCR. Decreased lung function, measured by a forced expiratory volume in 1 s (FEV1% predicted), was significantly associated with the minor allele genotypes (AT + TT) of NLRP1 rs12150220 (p = 0.0002). The same rs12150220 genotypes exhibited a higher level of serum IL-1β compared to the AA genotype (p = 0.027) in COPD patients. NLRP8 rs306481 minor allele genotypes (AG + AA) were more common in the Global Initiative for Chronic Obstructive Lung Disease (GOLD) definition of group A (p = 0.0083). Polymorphisms in NLRP1 (rs12150220; OR = 0.55, p = 0.03) and NLRP4 (rs12462372; OR = 0.36, p = 0.03) were only nominally associated with COPD risk. In conclusion, coding polymorphisms in NLRP1 rs12150220 show an association with COPD disease severity, indicating that the fine-tuning of the NLRP1 inflammasome could be important in maintaining lung tissue integrity and treating the chronic inflammation of airways

    Genetic Variants Associated with Chronic Kidney Disease in a Spanish Population

    Get PDF
    Chronic kidney disease (CKD) patients have many affected physiological pathways. Variations in the genes regulating these pathways might affect the incidence and predisposition to this disease. A total of 722 Spanish adults, including 548 patients and 174 controls, were genotyped to better understand the effects of genetic risk loci on the susceptibility to CKD. We analyzed 38 single nucleotide polymorphisms (SNPs) in candidate genes associated with the inflammatory response (interleukins IL-1A, IL-4, IL-6, IL-10, TNF-α, ICAM-1), fibrogenesis (TGFB1), homocysteine synthesis (MTHFR), DNA repair (OGG1, MUTYH, XRCC1, ERCC2, ERCC4), renin-angiotensin-aldosterone system (CYP11B2, AGT), phase-II metabolism (GSTP1, GSTO1, GSTO2), antioxidant capacity (SOD1, SOD2, CAT, GPX1, GPX3, GPX4), and some other genes previously reported to be associated with CKD (GLO1, SLC7A9, SHROOM3, UMOD, VEGFA, MGP, KL). The results showed associations of GPX1, GSTO1, GSTO2, UMOD, and MGP with CKD. Additionally, associations with CKD related pathologies, such as hypertension (GPX4, CYP11B2, ERCC4), cardiovascular disease, diabetes and cancer predisposition (ERCC2) were also observed. Different genes showed association with biochemical parameters characteristic for CKD, such as creatinine (GPX1, GSTO1, GSTO2, KL, MGP), glomerular filtration rate (GPX1, GSTO1, KL, ICAM-1, MGP), hemoglobin (ERCC2, SHROOM3), resistance index erythropoietin (SOD2, VEGFA, MTHFR, KL), albumin (SOD1, GSTO2, ERCC2, SOD2), phosphorus (IL-4, ERCC4 SOD1, GPX4, GPX1), parathyroid hormone (IL-1A, IL-6, SHROOM3, UMOD, ICAM-1), C-reactive protein (SOD2, TGFB1, GSTP1, XRCC1), and ferritin (SOD2, GSTP1, SLC7A9, GPX4). To our knowledge, this is the second comprehensive study carried out in Spanish patients linking genetic polymorphisms and CKD

    Coding variants in NOD-like receptors: An association study on risk and survival of colorectal cancer

    Get PDF
    Nod-like receptors (NLRs) are important innate pattern recognition receptors and regulators of inflammation or play a role during development. We systematically analysed 41 non-synonymous single nucleotide polymorphisms (SNPs) in 21 NLR genes in a Czech discovery cohort of sporadic colorectal cancer (CRC) (1237 cases, 787 controls) for their association with CRC risk and survival. Five SNPs were found to be associated with CRC risk and eight with survival at 5% significance level. In a replication analysis using data of two large genome-wide association studies (GWASs) from Germany (DACHS: 1798 cases and 1810 controls) and Scotland (2210 cases and 9350 controls) the associations found in the Czech discovery set were not confirmed. However, expression analysis in human gut-related tissues and immune cells revealed that the NLRs associated with CRC risk or survival in the discovery set were expressed in primary human colon or rectum cells, CRC tissue and/or cell lines, providing preliminary evidence for a potential involvement of NLRs in general in CRC development and/or progression. Most interesting was the finding that the enigmatic development-related NLRP5 (also known as MATER) was not expressed in normal colon tissue but in colon cancer tissue and cell lines. Future studies may show whether regulatory variants instead of coding variants might affect the expression of NLRs and contribute to CRC risk and survival

    Association of NLRP1 Coding Polymorphism with Lung Function and Serum IL-1β Concentration in Patients Diagnosed with Chronic Obstructive Pulmonary Disease (COPD)

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a chronic disease characterized by a progressive decline in lung function due to airflow limitation, mainly related to IL-1β-induced inflammation. We have hypothesized that single nucleotide polymorphisms (SNPs) in NLRP genes, coding for key regulators of IL-1β, are associated with pathogenesis and clinical phenotypes of COPD. We recruited 704 COPD individuals and 1238 healthy controls for this study. Twenty non-synonymous SNPs in 10 different NLRP genes were genotyped. Genetic associations were estimated using logistic regression, adjusting for age, gender, and smoking history. The impact of genotypes on patients’ overall survival was analyzed with the Kaplan–Meier method with the log-rank test. Serum IL-1β concentration was determined by high sensitivity assay and expression analysis was done by RT-PCR. Decreased lung function, measured by a forced expiratory volume in 1 s (FEV1% predicted), was significantly associated with the minor allele genotypes (AT + TT) of NLRP1 rs12150220 (p = 0.0002). The same rs12150220 genotypes exhibited a higher level of serum IL-1β compared to the AA genotype (p = 0.027) in COPD patients. NLRP8 rs306481 minor allele genotypes (AG + AA) were more common in the Global Initiative for Chronic Obstructive Lung Disease (GOLD) definition of group A (p = 0.0083). Polymorphisms in NLRP1 (rs12150220 ; OR = 0.55, p = 0.03) and NLRP4 (rs12462372 ; OR = 0.36, p = 0.03) were only nominally associated with COPD risk. In conclusion, coding polymorphisms in NLRP1 rs12150220 show an association with COPD disease severity, indicating that the fine-tuning of the NLRP1 inflammasome could be important in maintaining lung tissue integrity and treating the chronic inflammation of airways

    IDENTIFICAZIONE E CARATTERIZZAZIONE DI GENI IMPLICATI NEL MESOTELIOMA PLEURICO MALIGNO

    No full text
    Introduction: Malignant Pleural Mesothelioma (MPM) is a rare and extremely aggressive cancer of the pleural cavity. It has been demonstrated the correlation between its onset and exposure to asbestos’s fibers. To date, it is very difficult to diagnose MPM at an early stage, given the non-specificity of the symptoms with which it occurs. The prognosis is poor, and an effective management strategy for this type of tumor is still absent. Therefore, the need for early diagnosis of this tumor and improvements in the prognosis, encourages the research and the identification of diagnostic and prognostic biomarkers specific and highly sensitive for MPM. Previous works already done: This work is part of a larger project, aimed at the identification of genes, presenting a differential expression in tissues of healthy and pathological mesothelium. In this regard, a through literature research based on the transcriptomic’s works was carried out with the aim to collect all the genes deregulated in MPM. It was found that only some of these were cited as differentially expressed in no more than three studies. Given, the poor reproducibility among different works, an experimental validation of a total of 120 genes by Real-Time PCR was conducted by using an independent series MPM’s tissue and respective controls. Genes that have showed a positive result, were further validated in two cell lines of MPM. The validation has led to the individuation of 6 genes (CCNO, CFB, PDGFRB, SULF1, THBS2, TIMP3) that showed an “up-regulation”, statistically significant, both in tissues and cell lines. Aim and methods: The project of this thesis had the aim to verify through RNA-interference technique, the potential role of TIMP3, PDGFRB e SULF1 in the carcinogenesis of MPM. After the key genes depletion, it will be then possible to observe how the malignant cells’ phenotype respond in terms of expression’s levels of transcripts (though Real Time PCR), proliferative capacity (through SRB assay), apoptosis (through the measuring of caspase activity), invasiveness capacity (through the Wound-Healing Assay), colony formation capacity (through Colony Formation Assay) and, finally, level of senescence (through the β-galactosidase’s measuring). Preliminary results: From the first data SULF1’s silencing would seems to influence the proliferative and the colony formation’s capacity. This approach, thus, seems to be useful to understand the possible role played by genes in the healthy and in the malignant mesothelial tissue, and in the evaluating whether they could played a role either as possible markers of the disease or as potential therapeutic targets

    Pedigree based DNA sequencing pipeline for germline genomes of cancer families

    Get PDF
    Background: In the course of our whole-genome sequencing efforts, we have developed a pipeline for analyzing germline genomes from Mendelian types of cancer pedigrees (familial cancer variant prioritization pipeline, FCVPP). Results: The variant calling step distinguishes two types of genomic variants: single nucleotide variants (SNVs) and indels, which undergo technical quality control. Mendelian types of variants are assumed to be rare and variants with frequencies higher that 0.1 % are screened out using human 1000 Genomes (Phase 3) and non-TCGA ExAC population data. Segregation in the pedigree allows variants to be present in affected family members and not in old, unaffected ones. The effectiveness of variant segregation depends on the number and relatedness of the family members: if over 5 third-degree (or more distant) relatives are available, the experience has shown that the number of likely variants is reduced from many hundreds to a few tens. These are then subjected to bioinformatics analysis, starting with the combined annotation dependent depletion (CADD) tool, which predicts the likelihood of the variant being deleterious. Different sets of individual tools are used for further evaluation of the deleteriousness of coding variants, 5' and 3' untranslated regions (UTRs), and intergenic variants. Conlusions: The likelihood of success of the present genomic pipeline in finding novel high- or medium-penetrant genes depends on many steps but first and foremost, the pedigree needs to be reasonably large and the assignments and diagnoses among the members need to be correct

    Genetic variation of acquired structural chromosomal aberrations

    No full text
    Human malignancies are often hallmarked with genomic instability, which itself is also considered a causative event in malignant transformation. Genomic instability may manifest itself as genetic changes in the nucleotide sequence of DNA, or as structural or numerical changes of chromosomes. Unrepaired or insufficiently repaired DNA double-strand breaks, as well as telomere shortening, are important contributors in the formation of structural chromosomal aberrations (CAs). In the present review, we discuss potential mechanisms behind the formation of CAs and their relation to cancer. Based on our own studies, we also illustrate how inherited genetic variation may modify the frequency and types of CAs occurring in humans. Recently, we published a series of studies on variations in genes relevant to maintaining genomic integrity, such as those encoding xenobiotic-metabolising enzymes, DNA repair, the tumour suppressor TP53, the spindle assembly checkpoint, and cyclin D1 (CCND1). While individually genetic variation in these genes exerted small modulating effects, in interactions they were associated with CA frequencies in peripheral blood lymphocytes of healthy volunteers. Moreover, we observed opposite associations between the CCND1 splice site polymorphism rs9344 G870A and the frequency of CAs compared to their association with translocation t(11,14). We discuss the functional consequences of the CCND1 gene in interplay with DNA damage response and DNA repair during malignant transformation. Our review summarizes existing evidence that gene variations in relevant cellular pathways modulate the frequency of CAs, predominantly in a complex interaction. More functional/mechanistic studies elucidating these observations are required. Several questions emerge, such as the role of CAs in malignancies with respect to a particular phenotype and heterogeneity, the formation of CAs during the process of malignant transformation, and the formation of CAs in individual types of lymphocytes in relation to the immune response
    corecore