141 research outputs found

    The origins of Made in Spain fashion. The competitive advantage of the textile, apparel and footwear districts since the Golden Age

    Get PDF
    This paper explores the sources of competitive advantage of the Spanish export industrial districts that specialised in textile, apparel and footwear products. It shows that most of the nowadays outstanding Spanish firms in fashion-related international markets emerged from 1980s districts. Using a new database, the paper concludes that by then there were as many neo-Marshallian exporting districts dominated by small firms as hub-firm districts coordinated by medium-large companies. This probably allowed the latter to combine the advantages derived from Marshallian external economies (i.e. non-codified knowledge, subsidiary industries and specialized labour force) with those connected to leading firms organizational capabilities.fashion, inheritance, industrial district, textiles and apparel, leather and footwear, competitive advantage, leading firms, clusters

    Highly integrated bionic prostheses resolve the thermal asymmetry between residual amputated and contralateral limbs

    Get PDF
    Residual limbs after amputation present colder temperatures than unaffected contralateral limbs. This temperature asymmetry has been attributed to autonomic and cognitive factors, such as changes in body representation. An ideal limb replacement should restore the body representation and resolve the temperature asymmetry, but conventional prostheses, commonly characterized as disembodied, fail to do so. Neuromusculoskeletal prostheses are a new concept of artificial limbs that directly interface with the user\u27s nerves, muscles, and skeleton, and are operated in daily life by bidirectionally transferring control and somatosensory information. Here, we show that the temperature asymmetry commonly found in people with amputations is resolved when using a neuromusculoskeletal prosthesis but reappears when it is removed. A potential explanation for this phenomenon might be the increased embodiment reported by users of neuromusculoskeletal prostheses, which in turn would suggest unconscious perceptual mechanisms mediating the temperature asymmetry commonly found between intact and residual limbs after amputation

    Analysis and Design of a Bypass Socket for Transradial Amputations

    Get PDF
    The ability to measure functional performance of a prosthesis is hindered by the lack of an equalized mechanical platform to test from. Researchers and designers seeking to increase the pace of development have attempted novel mounts for prostheses so these can be used by able-bodied participants. Termed bypass sockets, these can increase the sampling pool during prosthetic evaluations. Here, we present an open-source, 3D printable prosthetic bypass socket for below-elbow (transradial) amputations. Methods to quantify the effectiveness of bypass sockets are limited and therefore we propose the use of a validated and clinically relevant evaluation tool, the Assessment of Capacity for Myoelectric Control (ACMC). We performed the ACMC in six able-bodied subjects with limited experience with myoelectric prostheses and found the participants to be rated from non- to somewhat capable using the ACMC interpretation scale. In addition, we conducted a secondary evaluation consisting of a subset of tasks of the Cybathlon competition aimed at eliciting fatigue in the participants. All participants completed said tasks, suggesting that the bypass socket is suitable for extended use during prosthesis development.Clinical Relevance - The design and validation of the bypass socket presented here can facilitate the development of upper limb prosthetic systems

    Competitive motivation increased home use and improved prosthesis self-perception after Cybathlon 2020 for neuromusculoskeletal prosthesis user

    Get PDF
    Background Assistive technologies, such as arm prostheses, are intended to improve the quality of life of individuals with physical disabilities. However, certain training and learning is usually required from the user to make these technologies more effective. Moreover, some people can be encouraged to train more through competitive motivation. Methods In this study, we investigated if the training for and participation in a competitive event (Cybathlon 2020) could promote behavioral changes in an individual with upper limb amputation (the pilot). We defined behavioral changes as the active time while his prosthesis was actuated, ratio of opposing and simultaneous movements, and the pilot\u27s ability to finely modulate his movement speeds. The investigation was based on extensive home-use data from the period before, during and after the Cybathlon 2020 competition. Results Relevant behavioral changes were found from both quantitative and qualitative analyses. The pilot\u27s home use of his prosthesis nearly doubled in the period before the Cybathlon, and remained 66% higher than baseline after the competition. Moreover, he improved his speed modulation when controlling his prosthesis, and he learned and routinely operated new movements in the prosthesis (wrist rotation) at home. Additionally, as confirmed by semi-structured interviews, his self-perception of the prosthetic arm and its functionality also improved. Conclusions An event like the Cybathlon may indeed promote behavioral changes in how competitive individuals with amputation use their prostheses. Provided that the prosthesis is suitable in terms of form and function for both competition and at-home daily use, daily activities can become opportunities for training, which in turn can improve prosthesis function and create further opportunities for daily use. Moreover, these changes appeared to remain even well after the event, albeit relevant only for individuals who continue using the technology employed in the competition

    Improved control of a prosthetic limb by surgically creating electro-neuromuscular constructs with implanted electrodes

    Get PDF
    : Remnant muscles in the residual limb after amputation are the most common source of control signals for prosthetic hands, because myoelectric signals can be generated by the user at will. However, for individuals with amputation higher up the arm, such as an above-elbow (transhumeral) amputation, insufficient muscles remain to generate myoelectric signals to enable control of the lost arm and hand joints, thus making intuitive control of wrist and finger prosthetic joints unattainable. We show that severed nerves can be divided along their fascicles and redistributed to concurrently innervate different types of muscle targets, particularly native denervated muscles and nonvascularized free muscle grafts. We engineered these neuromuscular constructs with implanted electrodes that were accessible via a permanent osseointegrated interface, allowing for bidirectional communication with the prosthesis while also providing direct skeletal attachment. We found that the transferred nerves effectively innervated their new targets as shown by a gradual increase in myoelectric signal strength. This allowed for individual flexion and extension of all five fingers of a prosthetic hand by a patient with a transhumeral amputation. Improved prosthetic function in tasks representative of daily life was also observed. This proof-of-concept study indicates that motor neural commands can be increased by creating electro-neuromuscular constructs using distributed nerve transfers to different muscle targets with implanted electrodes, enabling improved control of a limb prosthesis

    Large electric-field induced strain in BiFeO3 ceramics

    Get PDF
    Large bipolar strain of up to 0.36% (peak-to-peak value) was measured in BiFeO3 ceramics at low frequency (0.1 Hz) and large amplitude (140 kV/cm) of the driving field. This strain is comparable to that achievable in highly efficient Pb-based perovskite ceramics, such as Pb(Zr,Ti)O3 and Pb(Mg,Nb)O3-PbTiO3. The strain showed a strong dependence on the field frequency and is likely largely associated with domain switching involving predominantly non-180{\deg} domain walls. In addition, rearrangement of charged defects by applying electric field of low frequency depins these domain walls, resulting in a more efficient switching and, consequently, an increased response

    Upper Limb Stroke Rehabilitation Using Surface Electromyography: A Systematic Review and Meta-Analysis

    Get PDF
    Background: Upper limb impairment is common after stroke, and many will not regain full upper limb function. Different technologies based on surface electromyography (sEMG) have been used in stroke rehabilitation, but there is no collated evidence on the different sEMG-driven interventions and their effect on upper limb function in people with stroke. Aim: Synthesize existing evidence and perform a meta-analysis on the effect of different types of sEMG-driven interventions on upper limb function in people with stroke. Methods: PubMed, SCOPUS, and PEDro databases were systematically searched for eligible randomized clinical trials that utilize sEMG-driven interventions to improve upper limb function assessed by Fugl-Meyer Assessment (FMA-UE) in stroke. The PEDro scale was used to evaluate the methodological quality and the risk of bias of the included studies. In addition, a meta-analysis utilizing a random effect model was performed for studies comparing sEMG interventions to non-sEMG interventions and for studies comparing different sEMG interventions protocols. Results: Twenty-four studies comprising 808 participants were included in this review. The methodological quality was good to fair. The meta-analysis showed no differences in the total effect, assessed by total FMA-UE score, comparing sEMG interventions to non-sEMG interventions (14 studies, 509 participants, SMD 0.14, P 0.37, 95% CI –0.18 to 0.46, I2 55%). Similarly, no difference in the overall effect was found for the meta-analysis comparing different types of sEMG interventions (7 studies, 213 participants, SMD 0.42, P 0.23, 95% CI –0.34 to 1.18, I2 73%). Twenty out of the twenty-four studies, including participants with varying impairment levels at all stages of stroke recovery, reported statistically significant improvements in upper limb function at post-sEMG intervention compared to baseline. Conclusion: This review and meta-analysis could not discern the effect of sEMG in comparison to a non-sEMG intervention or the most effective type of sEMG intervention for improving upper limb function in stroke populations. Current evidence suggests that sEMG is a promising tool to further improve functional recovery, but randomized clinical trials with larger sample sizes are needed to verify whether the effect on upper extremity function of a specific sEMG intervention is superior compared to other non-sEMG or other type of sEMG interventions

    A highly integrated bionic hand with neural control and feedback for use in daily life

    Get PDF
    Restoration of sensorimotor function after amputation has remained challenging because of the lack of human-machine interfaces that provide reliable control, feedback, and attachment. Here, we present the clinical implementation of a transradial neuromusculoskeletal prosthesis-a bionic hand connected directly to the user's nervous and skeletal systems. In one person with unilateral below-elbow amputation, titanium implants were placed intramedullary in the radius and ulna bones, and electromuscular constructs were created surgically by transferring the severed nerves to free muscle grafts. The native muscles, free muscle grafts, and ulnar nerve were implanted with electrodes. Percutaneous extensions from the titanium implants provided direct skeletal attachment and bidirectional communication between the implanted electrodes and a prosthetic hand. Operation of the bionic hand in daily life resulted in improved prosthetic function, reduced postamputation, and increased quality of life. Sensations elicited via direct neural stimulation were consistently perceived on the phantom hand throughout the study. To date, the patient continues using the prosthesis in daily life. The functionality of conventional artificial limbs is hindered by discomfort and limited and unreliable control. Neuromusculoskeletal interfaces can overcome these hurdles and provide the means for the everyday use of a prosthesis with reliable neural control fixated into the skeleton

    Simple top-down preparation of magnetic Bi0.9_{0.9}Gd0.1_{0.1}Fe1−x_{1-x}Tix_xO3_3 nanoparticles by ultrasonication of multiferroic bulk material

    Full text link
    We present a simple technique to synthesize ultrafine nanoparticles directly from bulk multiferroic perovskite powder. The starting materials, which were ceramic pellets of the nominal compositions of Bi0.9_{0.9}Gd0.1_{0.1}Fe1−x_{1-x}Tix_xO3_3 (x = 0.00-0.20), were prepared initially by a solid state reaction technique, then ground into micrometer-sized powders and mixed with isopropanol or water in an ultrasonic bath. The particle size was studied as a function of sonication time with transmission electron microscopic imaging and electron diffraction that confirmed the formation of a large fraction of single-crystalline nanoparticles with a mean size of 11-13 nm. A significant improvement in the magnetic behavior of Bi0.9_{0.9}Gd0.1_{0.1}Fe1−x_{1-x}Tix_xO3_3 nanoparticles compared to their bulk counterparts was observed at room temperature. This sonication technique may be considered as a simple and promising route to prepare ultrafine nanoparticles for functional applications.Comment: 7 pages, 5 figure
    • 

    corecore