32 research outputs found

    Testing the Effect of Sodium Bicarbonate Base on Blood Lactate Levels after a Strenuous Exercise

    Get PDF
    INTRODUCTION: The lactate is an intermediate metabolic, its production in the skeletal muscle increase during the exercise, principally in anaerobic condition that include oxygen deficiency in the skeletal muscle during the exercise. The lactate is released to systemic blood, where it participate in the Cori cycle, although in the blood, the metabolite can modify the blood’s pH. For the last condition, the human has some mechanism to attenuate the lactate effects on the pH in blood PURPOSE: The purpose of this study was evaluate the effect of the sodium bicarbonate ingestion on the lactate blood levels before and after an acute strenuous exercise in undergraduate students. METHODS: Five male (21.2 ± 21.5 years; 78 ± 9.73 kg) were recruited. Two strenuous exercise test of 4 minutes were performed. An interval of 24 hours was present between exercise sessions. The test consisted in intervals of 30 seconds to maximum intensity and with periods of submaximal intensity for 30 seconds. The lower intensity consisted of continuous aerobic activity to ≈ 60% of HRmax. The first test was performed without NaHCO3 ingestion. Contrary, the second exercise session was performed with NaHCO3 ingestion (300mg/kg body weight). The NaHCO3 ingestion was performed 2 hours previous to exercise. RESULTS: Without sodium bicarbonate ingestion, the lactate before physical effort was 1,74mmol, SD 2,15mmol, the lactate after to physical effort was 7,94mmol, SD 9,73, the oxygen in blood before to physical effort was 99% SD 0%, the oxygen after to physical effort was 96,6% SD 1,74%, the systolic blood pressure before physical effort was 122mmHg, SD 11,66mmHg, the diastolic blood pressure was 91,2 mmHg, SD 10mmHg, after physical effort the systolic blood pressure was 131,2mmHg. SD 11,90mmHg, the diastolic blood pressure was 76mmHg, SD 12,58mmHg. With sodium bicarbonate ingest, the lactate before physical effort was 0.4mmol, SD 0.56mmol, lactate after physical effort was 6.73, SD 7,31mmol, the oxygen in blood before physical effort was 99% SD 0%, after to physical effort was 96.66%, SD 0.47%. CONCLUSION: The present study shows that the bicarbonate ingestion does not change significantly the blood lactate concentrations after a strenuous exercise. Our current data could be consequence by the low sample size. Therefore, we suggest perform a new study with a bigger sample than the current work

    ANTARES search for point-sources of neutrinos using astrophysical catalogs: a likelihood stacking analysis

    Full text link
    A search for astrophysical point-like neutrino sources using the data collected by the ANTARES detector between January 29, 2007 and December 31, 2017 is presented. A likelihood stacking method is used to assess the significance of an excess of muon neutrinos inducing track-like events in correlation with the location of a list of possible sources. Different sets of objects are tested in the analysis: a) a sub-sample of the \textit{Fermi} 3LAC catalog of blazars, b) a jet-obscured AGN population, c) a sample of soft gamma-ray selected radio galaxies, d) a star-forming galaxy catalog , and e) a public sample of 56 very-high-energy track events from the IceCube experiment. None of the tested sources shows a significant association with the sample of neutrinos detected by ANTARES. The smallest p-value is obtained for the radio galaxies catalog with an equal weights hypothesis, with a pre-trial p-value equivalent to a 2.8 σ2.8 \, \sigma excess, equivalent to 1.6 σ1.6 \, \sigma post-trial. In addition, the results of a dedicated analysis for the blazar MG3 J225517+2409 are also reported: this source is found to be the most significant within the \textit{Fermi} 3LAC sample, with 5 ANTARES events located at less than one degree from the source. This blazar showed evidence of flaring activity in \textit{Fermi} data, in space-time coincidence with a high-energy track detected by IceCube. An \emph{a posteriori} significance of 2.0 σ2.0\, \sigma for the combination of ANTARES and IceCube data is reported

    Measurement of the atmospheric Μe and ΜΌ energy spectra with the ANTARES neutrino telescope

    Get PDF
    The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'Energie Atomique et aux Energies Alternatives(CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), Labex UnivEarthS(ANR-10-LABX-0023 and ANR-18-IDEX-0001), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-AlpesCote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Instituto Nazionale di Fisica Nucleare(INFN), Italy; Nederlandse Organisatie voor Wetenschappelijk Onderzoek(NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia e Innovacion (MCI) and Agencia Estatal de Investigacion: Programa Estatal de Generacion de Conocimiento (refs. PGC2018096663-B-C41, -A-C42, -B-C43, -B-C44) (MCI/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider, Junta de Andalucia (ref. SOMM17/6104/UGR and A-FQM-053-UGR18), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities. The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'Energie Atomique et aux Energies Alternatives(CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), Labex UnivEarthS(ANR-10-LABX-0023 and ANR-18-IDEX-0001), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-AlpesCote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Instituto Nazionale di Fisica Nucleare(INFN), Italy; Nederlandse Organisatie voor Wetenschappelijk Onderzoek(NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia e Innovacion (MCI) and Agencia Estatal de Investigacion: Programa Estatal de Generacion de Conocimiento (refs. PGC2018096663-B-C41, -A-C42, -B-C43, -B-C44) (MCI/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider, Junta de Andalucia (ref. SOMM17/6104/UGR and A-FQM-053-UGR18), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119) and GenT (ref. CIDEGENT/2018/034) programs, Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.This letter presents a combined measurement of the energy spectra of atmospheric nu(e) and nu(mu) in the energy range between similar to 100 GeV and similar to 50 TeV with the ANTARES neutrino telescope. The analysis uses 3012 days of detector livetime in the period 2007-2017, and selects 1016 neutrinos interacting in (or close to) the instrumented volume of the detector, yielding shower-like events (mainly from nu(e) + (nu) over bar (e) charged current plus all neutrino neutral current interactions) and starting track events (mainly from nu(mu) + (nu) over bar (mu) charged current interactions). The contamination by atmospheric muons in the final sample is suppressed at the level of a few per mill by different steps in the selection analysis, including a Boosted Decision Tree classifier. The distribution of reconstructed events is unfolded in terms of electron and muon neutrino fluxes. The derived energy spectra are compared with previous measurements that, above 100 GeV, are limited to experiments in polar ice and, for nu(mu), to Super-Kamiokande.Centre National de la Recherche Scientifique (CNRS)French Atomic Energy CommissionCommission Europeenne (FEDER fund)Institut Universitaire de France (IUF)Labex UnivEarthS ANR-10-LABX-0023 ANR-18-IDEX-0001Region Ile-de-FranceRegion Grand-EstRegion Provence-Alpes-Cote d'AzurRegion Provence-Alpes-Cote d'AzurFederal Ministry of Education & Research (BMBF)Instituto Nazionale di Fisica Nucleare(INFN), ItalyNetherlands Organization for Scientific Research (NWO)Netherlands GovernmentCouncil of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, RussiaConsiliul National al Cercetarii Stiintifice (CNCS)Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (UEFISCDI)Spanish Government PGC2018096663-B-C41 PGC2018096663-A-C42 PGC2018096663-B-C43 PGC2018096663-B-C44Severo Ochoa Centre of Excellence and MultiDark ConsoliderJunta de Andalucia SOMM17/6104/UGR A-FQM-053-UGR18Generalitat Valenciana: Grisolia program, Spain GRISOLIA/2018/119Generalitat Valenciana: GenT program, Spain CIDEGENT/2018/034Ministry of Higher Education, Scientific Research and Professional Training, MoroccoAgencia Estatal de Investigacion PGC2018096663-B-C41 PGC2018096663-A-C42 PGC2018096663-B-C43 PGC2018096663-B-C44Commission Europeenne (Marie Curie Program

    IPNL

    No full text

    Transport Services for Energy Constrained Environments ABSTRACT

    No full text
    is a network architecture whose design targets the reduction of the energy-per-bit used for data delivery in tactical wireless mobile ad-hoc networks (MANETs). It comprises the physical, MAC, routing, and transport layers of the communication stack. In this extended abstract we briefly summarize our work in progress on the design of JTP, the JAVeLEN Transport Protocol. The central question of our JTP research is, given a network-wide energy efficiency objective, how should a transport protocol be designed so that such objective is achieved while taking into account application semantics. JTP achieves that goal by exploiting reliability semantics weaker than those offered by TCP when applications tolerate it. JTP incorporates as well additional QoS provisions for applications. 1

    FIRE: flexible intra-AS routing environment

    No full text

    JAVeLEN – An Ultra-Low Energy Ad hoc Wireless Network Abstract –

    No full text
    Wireless networks are often very lightly used. Some wireless networks, most notably sensor networks, are also energy-constrained – that is, the period of time during which the network is operational depends on battery lifetime. We have designed and simulated a novel design for a mobile ad hoc network with a low offered load (of approximately 1 % average loading) that uses dramatically less (often 300 times or 99.7 % less) power than industry standard protocols and yet achieves higher delivery reliability, handles substantially greater node densities, supports mobility, and has the ability to perform well even under high offered loads. Several innovations were required to achieve this efficiency, most notably the design of a dualradio transceiver and careful redesign of the protocol stack (physical, media access, routing and transport protocols) to make effective use of the power of the radio transceivers
    corecore