32 research outputs found
Targeted conservation genetics of the endangered chimpanzee
Populations of the common chimpanzee (Pan troglodytes) are in an impending risk of going extinct in the wild as a consequence of damaging anthropogenic impact on their natural habitat and illegal pet and bushmeat trade. Conservation management programmes for the chimpanzee have been established outside their natural range (ex situ), and chimpanzees from these programmes could potentially be used to supplement future conservation initiatives in the wild (in situ). However, these programmes have often suffered from inadequate information about the geographical origin and subspecies ancestry of the founders. Here, we present a newly designed capture array with ~60,000 ancestry informative markers used to infer ancestry of individual chimpanzees in ex situ populations and determine geographical origin of confiscated sanctuary individuals. From a test panel of 167 chimpanzees with unknown origins or subspecies labels, we identify 90 suitable non-admixed individuals in the European Association of Zoos and Aquaria (EAZA) Ex situ Programme (EEP). Equally important, another 46 individuals have been identified with admixed subspecies ancestries, which therefore over time, should be naturally phased out of the breeding populations. With potential for future re-introduction to the wild, we determine the geographical origin of 31 individuals that were confiscated from the illegal trade and demonstrate the promises of using non-invasive sampling in future conservation action plans. Collectively, our genomic approach provides an exemplar for ex situ management of endangered species and offers an efficient tool in future in situ efforts to combat the illegal wildlife trade.PF is supported by the Innovation Fund Denmark doctoral fellowship programme and the Candys Foundation. CF is supported by “la Caixa” doctoral fellowship programme. TSK is funded by Carlsberg grant CF19-0712 prepared within the framework of the HSE University Basic Research Program. TMB is supported by BFU2017-86471-P (MINECO/FEDER, UE), U01 MH106874 grant, Howard Hughes International Early Career, Obra Social “La Caixa” and Secretaria d’Universitats i Recerca and CERCA Programme del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 880). EL is supported by CGL2017-82654-P (MINECO/FEDER, UE).Peer reviewe
Perfil de pacientes hematológicos atendidos en un servicio de urgencias hospitalario
Poster [PC-355]
Introducción: Durante los últimos años existe un aumento progresivo en la demanda de asistencia en los servicios de urgencias hospitalarios (SUH), tanto generales como pediátricos. Los pacientes hematológicos presentan numerosos episodios clínicos que precisan valoración clínica urgente y dada la facilidad de acceso a los SUH emplean este medio.
Métodos: Estudio descriptivo observacional de las urgencias en pacientes con patología hematológica atendidas en el Servicio de Urgencias del Hospital Universitario Miguel Servet de Zaragoza (Hospital de tercer nivel). Periodo de estudio (Enero 2017-Diciembre 2017). Criterios de inclusión:
Paciente: s con diagnóstico hematológico según la clasificación CIE-9 en el informe de alta de urgencias. Grupo de pacientes adultos (> 14 años): atendidos en el Hospital General, y grupo de pacientes pediátricos (< 14 años): atendidos en el Hospital Infantil. Variables analizadas: edad, sexo, grupo de patología y nivel de triaje. Datos recogidos a través del registro derivado de la Base de Datos generada por el aplicativo informático “Puesto Clínico Hospitalario de Urgencias”, que da soporte a la actividad asistencial de los servicios de urgencias hospitalarios de Aragón. Se obtuvo autorización correspondiente del centro y del SUH para el acceso a los datos informáticos.
Resultados: Muestra total de 2193 pacientes: 1928 en el grupo de adultos y 265 en el grupo pediátrico. En el grupo de adultos la edad media de consulta en SUH fue de 71, 4 años (DE: 18.10), siendo el subgrupo de 81-90 años el que más frecuentemente acude (31.74%). En la población infantil la edad media de consulta fue de 6, 39 años (DE: 4.54), siendo entre los 0-2 años la edad que más frecuenta Urgencias (19.62%). Respecto a la distribución según sexo, el 55% de las consultas son realizadas por mujeres y el 45% por hombres. Sin embargo, en la población infantil el 52% de las consultas son realizadas por niños y el 48% por niñas. En el análisis según grupo de enfermedad: el grupo pediátrico consulta más frecuentemente por enfermedades de hemostasia (47.17%), mientras que los adultos consultan más por enfermedades de serie roja (61.28%). En ambos grupos, las consultas realizadas en Urgencias son de gran complejidad con una prioridad elevada de asistencia. El 93% de la patología en adultos y el 71% de la patología infantil hematológica es triada con niveles I-III de urgencia y tiempos asistenciales reducidos.
Conclusiones: El comportamiento de las enfermedades hematológicas varía en función de la edad, el sexo y el tipo de enfermedad. La patología hematológica tiene un gran impacto dentro de los servicios de urgencias hospitalarios, dado que estos pacientes presentan un perfil complejo que requerirá diagnóstico y tratamiento rápido por la gravedad del tipo de complicaciones que asocian. En consonancia con la población envejecida, los pacientes que más demandan la atención en Urgencias y de forma repetida, son adultos muy mayores (81-90 años) pudiéndose plantear circuitos de asistencia urgente diferentes para estos pacientes
Overview of recent TJ-II stellarator results
The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presentedThis work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No. 633053. It has been partially funded by the Ministerio de Ciencia, Inovación y Universidades of Spain under projects ENE2013-48109-P, ENE2015-70142-P and FIS2017-88892-P. It has also received funds from the Spanish Government via mobility grant PRX17/00425. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by the Barcelona S.C. It has been supported as well by The Science and Technology Center in Ukraine (STCU), Project P-507F
Demonstration of reduced neoclassical energy transport in Wendelstein 7-X
Research on magnetic confinement of high-temperature plasmas has the ultimate goal of harnessing nuclear fusion for the production of electricity. Although the tokamak(1) is the leading toroidal magnetic-confinement concept, it is not without shortcomings and the fusion community has therefore also pursued alternative concepts such as the stellarator. Unlike axisymmetric tokamaks, stellarators possess a three-dimensional (3D) magnetic field geometry. The availability of this additional dimension opens up an extensive configuration space for computational optimization of both the field geometry itself and the current-carrying coils that produce it. Such an optimization was undertaken in designing Wendelstein 7-X (W7-X)(2), a large helical-axis advanced stellarator (HELIAS), which began operation in 2015 at Greifswald, Germany. A major drawback of 3D magnetic field geometry, however, is that it introduces a strong temperature dependence into the stellarator's non-turbulent 'neoclassical' energy transport. Indeed, such energy losses will become prohibitive in high-temperature reactor plasmas unless a strong reduction of the geometrical factor associated with this transport can be achieved; such a reduction was therefore a principal goal of the design of W7-X. In spite of the modest heating power currently available, W7-X has already been able to achieve high-temperature plasma conditions during its 2017 and 2018 experimental campaigns, producing record values of the fusion triple product for such stellarator plasmas(3,4). The triple product of plasma density, ion temperature and energy confinement time is used in fusion research as a figure of merit, as it must attain a certain threshold value before net-energy-producing operation of a reactor becomes possible(1,5). Here we demonstrate that such record values provide evidence for reduced neoclassical energy transport in W7-X, as the plasma profiles that produced these results could not have been obtained in stellarators lacking a comparably high level of neoclassical optimization.Previously documented record values of the fusion triple product in the stellarator Wendelstein 7-X are shown to be evidence for reduced neoclassical energy transport in this optimized device
Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation
In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X
Towards a new image processing system at Wendelstein 7-X: From spatial calibration to characterization of thermal events
Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors
Prevalence of Frailty in European Emergency Departments (FEED): an international flash mob study
Introduction
Current emergency care systems are not optimized to respond to multiple and complex problems associated with frailty. Services may require reconfiguration to effectively deliver comprehensive frailty care, yet its prevalence and variation are poorly understood. This study primarily determined the prevalence of frailty among older people attending emergency care.
Methods
This cross-sectional study used a flash mob approach to collect observational European emergency care data over a 24-h period (04 July 2023). Sites were identified through the European Task Force for Geriatric Emergency Medicine collaboration and social media. Data were collected for all individuals aged 65 + who attended emergency care, and for all adults aged 18 + at a subset of sites. Variables included demographics, Clinical Frailty Scale (CFS), vital signs, and disposition. European and national frailty prevalence was determined with proportions with each CFS level and with dichotomized CFS 5 + (mild or more severe frailty).
Results
Sixty-two sites in fourteen European countries recruited five thousand seven hundred eighty-five individuals. 40% of 3479 older people had at least mild frailty, with countries ranging from 26 to 51%. They had median age 77 (IQR, 13) years and 53% were female. Across 22 sites observing all adult attenders, older people living with frailty comprised 14%.
Conclusion
40% of older people using European emergency care had CFS 5 + . Frailty prevalence varied widely among European care systems. These differences likely reflected entrance selection and provide windows of opportunity for system configuration and workforce planning
Can environment or allergy explain international variation in prevalence of wheeze in childhood?
Asthma prevalence in children varies substantially around the world, but the contribution of known risk factors to this international variation is uncertain. The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Two studied 8–12 year old children in 30 centres worldwide with parent-completed symptom and risk factor questionnaires and aeroallergen skin prick testing. We used multilevel logistic regression modelling to investigate the effect of adjustment for individual and ecological risk factors on the between-centre variation in prevalence of recent wheeze. Adjustment for single individual-level risk factors changed the centre-level variation from a reduction of up to 8.4% (and 8.5% for atopy) to an increase of up to 6.8%. Modelling the 11 most influential environmental factors among all children simultaneously, the centre-level variation changed little overall (2.4% increase). Modelling only factors that decreased the variance, the 6 most influential factors (synthetic and feather quilt, mother’s smoking, heating stoves, dampness and foam pillows) in combination resulted in a 21% reduction in variance. Ecological (centre-level) risk factors generally explained higher proportions of the variation than did individual risk factors. Single environmental factors and aeroallergen sensitisation measured at the individual (child) level did not explain much of the between-centre variation in wheeze prevalence