84 research outputs found

    Chiral flow in a binary mixture of two-dimensional active disks

    Full text link
    We study, experimentally, the dynamics of a binary mixture of air-fluidized disks. The disks are chiral since they incorporate a set of blades with constant tilt. Both species are identical except for their blades tilt angle, which is rotated by 180o in the second species. We analyze the phase behavior of the system. Our analysis reveals a wide range of different fluid dynamics, including chiral flow. This chiral flow features in its base state a large vortex. We report, for certain ranges of relative particle density of each species, inversion of the vorticity of this vortex. We discuss on the possible mechanisms behind these chiral flow transitions.Comment: Additional data can be found in: https://doi.org/10.5281/zenodo.664770

    Instructive microenvironments in skin wound healing: biomaterials as signal releasing platforms

    Get PDF
    Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signaling molecules that regulate the cellular response and the dynamic remodeling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body’s own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signaling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing.Peer ReviewedPostprint (author's final draft

    Hierarchically engineered fibrous scaffolds for bone regeneration

    Get PDF
    Surface properties of biomaterials play a major role in the governing of cell functionalities. It is well known that mechanical, chemical and nanotopo- graphic cues, for example, influence cell proliferation and differentiation. Here, we present a novel coating protocol to produce hierarchicallyengineered fibrous scaffolds with tailorable surface characteristics, which mimic bone extracellular matrix. Based on the sol–gel method and a succession of surface treatments, hollow electrospun polylactic acid fibres were coated with a silicon–calcium–phosphate bioactive organic–inorganic glass. Compared with pure polymeric fibres that showed a completely smooth surface, the coated fibres exhibited a nanostructured topography and greater roughness. They also showed improved hydrophilic properties and a Young’s modulus sixfold higher than non-coated ones, while remaining fully flexible and easy to handle. Rat mesenchymal stem cells cultured on these fibres showed great cellular spreading and interactions with the material. This protocol can be transferred to other structures and glasses, allowing the fabrication of var- ious materials with well-defined features. This novel approach represents therefore a valuable improvement in the production of artificial matrices able to direct stem cell fate through physical and chemical interactionsPostprint (published version

    Engineering cell-derived matrices: from 3D models to advanced personalized therapies

    Get PDF
    Regenerative medicine and disease models have evolved in recent years from two to three dimensions, providing in vitro constructs that are more similar to in vivo tissues. By mimicking native tissues, cell-derived matrices (CDMs) have emerged as new modifiable extracellular matrices for a variety of tissues, allowing researchers to study basic cellular processes in tissue-like structures, test tissue regeneration approaches, and model disease development. In this review, different fabrication techniques and characterization methods of CDMs are presented and examples of their application in cell behavior studies, tissue regeneration, and disease models are provided. In addition, future guidelines and perspectives in the field of CDMs are discussed.Peer ReviewedPostprint (author's final draft

    Structural Substituent Effect in the Excitation Energy of aChromophore: Quantitative Determination and Application toS-Nitrosothiols

    Get PDF
    A methodology for the prediction of excitation energies for substituted chromophores on the basis of ground state structures has been developed. The formalism introduces the concept of ?structural substituent excitation energy effect? for the rational prediction and quantification of the substituent effect in the excitation energy of a chromophore to an excited electronic state. This effect quantifies exclusively the excitation energy variation due to the structural changes of the chromophore induced by the substituent. Therefore, excitation bathochromic and hypsochromic shifts of substituted chromophores can be predicted on the basis of known ground and excited potential energy surfaces of a reference unsubstituted chromophore, together with the ground state minimum energy structure of the substituted chromophore. This formalism can be applied if the chemical substitution does not affect the nature of the electronic excitation, where the substituent effect can be understood as a force acting on the chromophore and provoking a structural change on it. The developed formalism provides a useful tool for quantitative and qualitative determination of the excitation energy of substituted chromophores and also for the analysis and determination of the structural changes affecting this energy. The proposed methodology has been applied to the prediction of the excitation energy to the first bright state of several S-nitrosothiols using the potential energy surfaces of methyl-S-nitrosothiol as a reference unsubstituted chromophore.Ministerio de Ciencia e InnovaciónUniversidad de Alcal

    Performance of Screening Strategies for Latent Tuberculosis Infection in Patients with Inflammatory Bowel Disease: Results from the ENEIDA Registry of GETECCU

    Get PDF
    (1) Aims: Patients receiving antitumor necrosis factor (anti-TNF) therapy are at risk of developing tuberculosis (TB), usually due to the reactivation of a latent TB infection (LTBI). LTBI screening and treatment decreases the risk of TB. This study evaluated the diagnostic performance of different LTBI screening strategies in patients with inflammatory bowel disease (IBD). (2) Methods: Patients in the Spanish ENEIDA registry with IBD screened for LTBI between January 2003 and January 2018 were included. The diagnostic yield of different strategies (dual screening with tuberculin skin test [TST] and interferon-gamma-release assay [IGRA], two-step TST, and early screening performed at least 12 months before starting biological treatment) was analyzed. (3) Results: Out of 7594 screened patients, 1445 (19%; 95% CI 18-20%) had LTBI. Immunomodulator (IMM) treatment at screening decreased the probability of detecting LTBI (20% vs. 17%, p = 0.001). Regarding screening strategies, LTBI was more frequently diagnosed by dual screening than by a single screening strategy (IGRA, OR 0.60; 95% CI 0.50-0.73, p < 0.001; TST, OR 0.76; 95% CI 0.66-0.88, p < 0.001). Two-step TST increased the diagnostic yield of a single TST by 24%. More cases of LTBI were diagnosed by early screening than by routine screening before starting anti-TNF agents (21% [95% CI 20-22%] vs. 14% [95% CI 13-16%], p < 0.001). The highest diagnostic performance for LTBI (29%) was obtained by combining early and TST/IGRA dual screening strategies in patients without IMM. (4): Conclusions: Both early screening and TST/IGRA dual screening strategies significantly increased diagnostic performance for LTBI in patients with IBD, with optimal performance achieved when they are used together in the absence of IMM

    A crowdsourcing database for the copy-number variation of the spanish population

    Get PDF
    Background: Despite being a very common type of genetic variation, the distribution of copy-number variations (CNVs) in the population is still poorly understood. The knowledge of the genetic variability, especially at the level of the local population, is a critical factor for distinguishing pathogenic from non-pathogenic variation in the discovery of new disease variants. Results: Here, we present the SPAnish Copy Number Alterations Collaborative Server (SPACNACS), which currently contains copy number variation profiles obtained from more than 400 genomes and exomes of unrelated Spanish individuals. By means of a collaborative crowdsourcing effort whole genome and whole exome sequencing data, produced by local genomic projects and for other purposes, is continuously collected. Once checked both, the Spanish ancestry and the lack of kinship with other individuals in the SPACNACS, the CNVs are inferred for these sequences and they are used to populate the database. A web interface allows querying the database with different filters that include ICD10 upper categories. This allows discarding samples from the disease under study and obtaining pseudo-control CNV profiles from the local population. We also show here additional studies on the local impact of CNVs in some phenotypes and on pharmacogenomic variants. SPACNACS can be accessed at: http://csvs.clinbioinfosspa.es/spacnacs/. Conclusion: SPACNACS facilitates disease gene discovery by providing detailed information of the local variability of the population and exemplifies how to reuse genomic data produced for other purposes to build a local reference database.This work is supported by Grants PID2020-117979RB-I00 from the Spanish Ministry of Science and Innovation; by the Institute of Health Carlos III (project IMPaCT-Data, exp. IMP/00019, IMP/00009 and PI20/01305), co-funded by the European Union, European Regional Development Fund (ERDF, “A way to make Europe”)
    corecore