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Hierarchically engineered fibrous scaffolds
for bone regeneration
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Surface properties of biomaterials play a major role in the governing of cell

functionalities. It is well known that mechanical, chemical and nanotopo-

graphic cues, for example, influence cell proliferation and differentiation.

Here, we present a novel coating protocol to produce hierarchically engineered

fibrous scaffolds with tailorable surface characteristics, which mimic bone

extracellular matrix. Based on the sol–gel method and a succession of surface

treatments, hollow electrospun polylactic acid fibres were coated with a

silicon–calcium–phosphate bioactive organic–inorganic glass. Compared

with pure polymeric fibres that showed a completely smooth surface, the

coated fibres exhibited a nanostructured topography and greater roughness.

They also showed improved hydrophilic properties and a Young’s modulus

sixfold higher than non-coated ones, while remaining fully flexible and easy

to handle. Rat mesenchymal stem cells cultured on these fibres showed

great cellular spreading and interactions with the material. This protocol can

be transferred to other structures and glasses, allowing the fabrication of var-

ious materials with well-defined features. This novel approach represents

therefore a valuable improvement in the production of artificial matrices

able to direct stem cell fate through physical and chemical interactions.
1. Introduction
Despite the considerable advances made in regenerative medicine in the last

decade, the production of novel biomaterials for tissue engineering remains a

challenging field of research. The complexity of the biological environment

and the difficulty of producing materials that can properly interact with it

make the development of such materials especially ambitious. Indeed,

today’s biomaterials should fulfil many requirements in order to be successfully

implanted. Besides being biocompatible and having an appropriate porosity,

they should also be instructive to trigger specific cellular responses. They

should provide the right signals to the cells (i.e. chemical signals, topography

and mechanical properties) that promote their differentiation into a particular

cell lineage, and therefore stimulate the formation of new tissues [1]. As tempor-

ary templates, the degradation speed of biomaterials must be tuned to match

tissue formation, with the result that they are entirely replaced by the naturally

regenerated tissue. Many of the temporary tissue regeneration solutions cur-

rently developed rely on products that combine biological agents, such as

cells or biomolecules. But, even though this approach has proved to be success-

ful in some applications, it involves complications in scalable fabrication,

storing and strict regulatory issues. The cost and complexity of these therapies

are leading to requests for other novel and more cost-effective alternatives [2].

For bone regeneration, hybrid materials (materials composed of a mixture of

inorganic components, organic components or both types of components,

which usually interpenetrate on the submicrometre scale [3]) appear to be

one of the most promising candidates for the design of new scaffolds, owing

to their excellent bioactivity and suitable mechanical properties [4]. However,
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Scheme 1. Chemical coating reactions. Schematic illustration of PLA fibres coating process involving surface treatments such as (A) hydrolysis, (B) activation of
reactive groups and (C) functionalization with coupling agent and (D, E and F) glass bonding.
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they generally lack strong chemical interactions between their

constituents, resulting in their non-homogeneous and fast

degradation in body fluid. As a consequence, the degradation

of the implant often mismatches the formation of the newly

formed bone [4]. On the other hand, hybrid materials are

usually produced by a non-tailored dispersion or mix of an

inorganic phase into a synthetic polymeric matrix (bioactive

glass or hydroxyapatite nanoparticles, for examples). Thus,

the inorganic compound is often masked by the polymer [5].

As the cells attach preferentially to the bioactive compound

rather than to the synthetic polymer [6], a previous degrada-

tion of the polymer is needed to reveal the bioactive entity

underneath and achieve efficient cell adhesion. Therefore, the

creation of hybrid biodegradable scaffolds that possess strong

interactions (i.e. covalent bonding) between their organic and

inorganic phases is required in order to have better control of

the degradation process [7], as well as the entire exposure of

the bioactive material at the surface to enhance cell–material

interactions. All these requirements should be satisfied also in

a comprehensive three-dimensional structure which mimics

the fibrous structure of the extracellular matrix of natural bone.
2. Results and discussion
Accordingly, we report the fabrication of a hybrid electrospun

nanofibrous scaffold obtained by a new coating protocol.

Here, the nanofibrous scaffold made of poly lactic acid (PLA)
(FDA-approved for several devices and extensively used in

regenerative medicine [8]) provides the flexible structural sup-

port while a sol–gel processed organic–inorganic bioactive

glass (P2O5-CaO-SiO2 system [9]) supplies the chemical bio-

active cues. The use of this system was supported by several

published studies in which good osteointegrative properties

and the triggering of a proper cellular response were reported

[10,11]. The gradual biodegradation of the bioactive glass (i.e.

ions required to guide bone tissue repair [11,12]) will trigger

the regeneration process. Electrospun fibres have been shown

to faithfully mimic the fibrous components of the extracellular

matrix structure of natural bone, and therefore represent a suit-

able basic architecture for this study [13,14]. Hollow PLA fibres

were produced with a conventional electrospinning device

due to the Kirkendall effect [15] and 2,2,2-trifluroethanol as

solvent. Then, fibres were subjected to a succession of surface

treatments: first, controlled hydrolysis was applied to create

carboxyl groups at the surface of the fibres (scheme 1A).

These groups were then activated through immersion in

an 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/

N-hydroxysuccinimide (NHS) solution (scheme 1B), and

finally functionalized with the (3-aminopropyl)triethoxysilane

(APTES) coupling agent (scheme 1C). In parallel, an ormoglass

(organically modified glass) solution containing Si, Ca and P

was partially hydrolysed in order to create a colloidal glass sus-

pension. Hence, an organic–inorganic xerogel that contains

alkoxide groups linked to the metal cations can be obtained.

This suspension is then deposited on the previously APTES



(a) (b)

500 nm

75 µm 10 µm 1 µm

500 nm 200 nm

(c)

(d ) (e) ( f )

Figure 1. Fibre morphology and cell – material interactions. Topography of (a) pure PLA and (b,c) coated fibres attesting to the rough nanostructured surface of the
fibres after treatments. (d ) Confocal imaging of rMSCs cultured on coated fibres showing stress fibres inside cells. The nuclei appear as dark patches. (e,f ) Mor-
phology of rMSCs showing the good spreading and interactions of cells with the scaffold (arrows point the edge of the cells). (Online version in colour.)

(a) PLA fibres

200 nm

coated fibres

(b) 975.7 ± 84.2 nm

686.5 ± 47.5 nm

604.2 ± 115.5 nm

(c)

Figure 2. Fibres characteristics: (a) water contact angle pictures showing the excellent hydrophilicity of the coated fibres (31.8+0.58) compared with the pure PLA
ones (124.3+1.28). (b) Fibre cross section obtained by focus ion beam technique showing the tubular structure of the fibres, and (c) detailed scheme presenting
their average measured dimensions.
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functionalized fibres (scheme 1D,E). Terminal ethyl groups of

APTES reacted with the glass suspension through a conden-

sation process, forming siloxane bonds and linking the glass

to the polymer covalently by means of APTES (scheme 1F)

[16]. Finally, to ensure that the glass particles were strongly

and efficiently attached, the fibres were sonicated for 5 min.

Field emission scanning electron microscopy was used

to observe the morphology and determine the thickness of

the coated fibres. A rough nanostructured surface topography

compared to non-treated fibres was revealed (figure 1a–c);

confirmed and quantified by atomic force microscopy mea-

surements (see electronic supplementary material, figure A).

As nanophased materials have been demonstrated to guide

cell behaviour towards the desired biological response (i.e.

increased adhesion and proliferation) [17,18], this feature of

the developed material demonstrates its potential in future

applications. In fact, the hydrolysis conditions involved in the

sol–gel method determine the final state of the condensed par-

ticles [19]. The size of the ormoglass particles, for example, can

be tailored by changing the quantity of water introduced to

initiate hydrolysis [19,20]. Thus, owing to exact control at the

hydrolysis stage, it might be possible to modify the topography

of the coating. The nanoroughness that can be achieved by coat-

ing polymeric fibres with glass particles is essential for the

regulation of cellular behaviours [21].

On the other hand, chemical composition of the surface also

affects cellular response: the composition of the coating
measured by EDS showed that PLA fibres were coated with

55.1+3.0 Si, 9.5+0.8 P2 and 35.4+3.9 Ca ormoglass (molar

ratio). In this work, rat mesenchymal stem cells (rMSCs) seeded

on the material spread generously, demonstrating good inter-

actions with the scaffold even after just 1 day (figure 1d–f). In

addition to the direct exposure of the glass, this copious spread-

ing can be explained by the notable hydrophilic properties

achieved after the coating process (figure 2a) and the focal adhe-

sions created, thanks to the nanostructured surface of the matrix

[22]. In the longer term, the produced material is intended to act

as an ion release agent that will promote rMSC differentiation by

delivering the appropriate chemical cues [11,12]. In parallel, this

material could be used as a drug delivery system to enable the

release of therapeutic agents (molecules or particles, for

example). The formation of hollow fibres during the electrospin-

ning process (figure 2b,c) [15] provides a supplementary surface-

to-volume ratio that would enhance the degradation rate of the

scaffold, as well as an inner surface that could be functionalized

with other bioactive or antimicrobial agents [23].

In addition to cell response, another crucial aspect for the

development of functional scaffolds for bone tissue engineer-

ing is the mechanical properties. As glass alone is extremely

brittle, hybrid materials have been developed to produce

glass-containing scaffolds with improved resistance to mech-

anical failure (toughness) [4]. Having an elastic deformation

ability is essential to ensure easy handling and structural

integrity of the scaffold during implantation, for example.



250 nm
1.3 MPa

5.5 MPa 54.4 MPa

9.4 MPa
250 nm

(a) (b)

Figure 3. Scaffolds stiffness. AFM images of (a) pure PLA fibres (DMT modulus ¼ 3.84+0.32 MPa) and (b) coated fibres (DMT modulus ¼ 42.23+4.24 MPa)
attesting of the improvement of hardness after coating. (Online version in colour.)
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According to mechanical tests (atomic force microscopy),

the DMT modulus of PLA scaffold is significantly increased

after coating (figure 3a,b). The material remains however

within an interesting working range, where it is ductile and

has a low fragility (see electronic supplementary material,

table C). It is, in fact, remarkably flexible for a material that

has glass as one of its constituents, in comparison with other

hybrids (see electronic supplementary material, figure D)

[4,24]. This can be explained by the use of an ormoglass

rather than a fully inorganic one [25] and the continuity of

flexibility maintained between the polymeric structure and

its non-brittle coating. No delamination of the glass is observed

when bending the material, and it can easily be manipulated to

fill bone defects with any shape. The coating approach offers

thus the possibility to enhance the stiffness of the pure poly-

meric structure and reaches values closer to that of the

calcified bone while remaining flexible.
3. Conclusions
In summary, the preliminary assays reported herein reveal

the great potential of this scaffold to be used as an engineered
material for bone tissue engineering. It exhibits a nano-

structured topography, excellent hydrophilic properties,

remarkable mechanical features and shows, as first encoura-

ging in vitro assay, a great ability to support cell spreading.

The total exposure of the inorganic compound was achieved,

as well as the creation of a covalent bond between the poly-

mer and the glass. This strong interaction is expected to

lead to a more homogeneous degradation of the material in

body fluid. Moreover, the tubular structure is a significant

advantage for the design of multifunctional materials. The

novel protocol developed to produce this scaffold is cost

effective and can be modified to coat other structures with

other glasses. This experimental method constitutes therefore

a promising and versatile approach which provides possibili-

ties for a broad range of biomedical applications that require

well-defined, hierarchically engineered biomaterials.
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