64 research outputs found

    Una molècula sintètica inhibeix de manera controlada la formació de tumors

    Get PDF
    Investigadors de la UAB i del CSIC han sintetitzat una molècula al laboratori que activa de manera eficient i controlada la resposta immunològica contra la proliferació de tumors. En experiments realitzats amb ratolins, l'administració de la molècula redueix dràsticament la formació de metàstasis als pulmons en un model de melanoma. La revista The Journal of Immunology ha publicat la recerca i la destaca com a una de les contribucions científiques més importants.Investigadores de la UAB y del CSIC han sintetizado una molécula en el laboratorio que activa de manera eficiente y controlada la respuesta inmunológica contra la proliferación de tumores. En experimentos realizados con ratones, la administración de la molécula reduce drásticamente la formación de metástasis en los pulmones en un modelo de melanoma. La revista The Journal of Immunology ha publicado la investigación y la destaca como una de las contribuciones científicas más importantes

    E-cadherin expression is associated with somatostatin analogue response in acromegaly

    Get PDF
    Acromegaly is a rare disease resulting from hypersecretion of growth hormone (GH) and insulin‐like growth factor 1 (IGF1) typically caused by pituitary adenomas, which is associated with increased mortality and morbidity. Somatostatin analogues (SSAs) represent the primary medical therapy for acromegaly and are currently used as first‐line treatment or as second‐line therapy after unsuccessful pituitary surgery. However, a considerable proportion of patients do not adequately respond to SSAs treatment, and therefore, there is an urgent need to identify biomarkers predictors of response to SSAs. The aim of this study was to examine E‐cadherin expression by immunohistochemistry in fifty‐five GH‐producing pituitary tumours and determine the potential association with response to SSAs as well as other clinical and histopathological features. Acromegaly patients with tumours expressing low E‐cadherin levels exhibit a worse response to SSAs. E‐cadherin levels are associated with GH‐producing tumour histological subtypes. Our results indicate that the immunohistochemical detection of E‐cadherin might be useful in categorizing acromegaly patients based on the response to SSAs.ISCIII‐Subdirección General de Evaluación y Fomento de la Investigación PI13/02043 PI16/00175FEDER PI13/02043 PI16/00175Junta de Andalucía A‐0023‐2015 A‐0003‐2016 CTS‐1406 BIO‐0139Andalusian Ministry of Health C‐0015‐2014CIBERobn PI13/ 02043 PI16/0017

    Comportamiento de cuarenta frutales tropicales no explotados comercialmente en Colombia.

    Get PDF
    "Colombia posee una amplia variedad de condiciones ecológicas apropiadas para el cultivo de frutales tropicales, nativos y exóticos. Muchos de ellos, a pesar de no ser explotados extensivamente, sobresalen por su consumo tradicional, por su alto valor alimenticio y como alternativa para ser cultivados en un futuro. En 1957, el Programa de Frutales del Instituto Colombiano Agropecuaro, plantó un huerto en el Centro Nacional de Investigaciones Palmira con 40 especies nativas y foráneas, no explotadas comercialmente, con el fin de observar su comportamiento bajo las condiciones del Valle del Cauca. En el presente trabajo se suministran datos sobre su crecimiento y producción y sobre su desarrollo a los 25 años de edad. También se determinó la distribución de los períodos de floraciópn y fructificación durante el año y su relación con las épocas de lluvia y seaquía. Se encontró que en los meses secos, enero a marzo y julio a septiembre, ocurren con mayor frecuencia las cosechas en los frutales evaluados. Entres las especies estudiadas, se presentan como promisorias para ser sembradas en el Valle del Cauca, las siguientes: guanábana, anona blanca, grosella, cereza de Ceylán, madroño, caimarón, carambola ""Icambola"", mamey, níspero, nispero-zapote, guayaba coronilla, jabóticaba, árbol del pan y acerola

    Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome

    Get PDF
    Severe acute respiratory syndrome coronavirus (SARS-CoV) envelope (E) protein is a viroporin involved in virulence. E protein ion channel (IC) activity is specifically correlated with enhanced pulmonary damage, edema accumulation and death. IL-1β driven proinflammation is associated with those pathological signatures, however its link to IC activity remains unknown. In this report, we demonstrate that SARS-CoV E protein forms protein–lipid channels in ERGIC/Golgi membranes that are permeable to calcium ions, a highly relevant feature never reported before. Calcium ions together with pH modulated E protein pore charge and selectivity. Interestingly, E protein IC activity boosted the activation of the NLRP3 inflammasome, leading to IL-1β overproduction. Calcium transport through the E protein IC was the main trigger of this process. These findings strikingly link SARS-CoV E protein IC induced ionic disturbances at the cell level to immunopathological consequences and disease worsening in the infected organism

    Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis

    Get PDF
    Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARSCoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+ /K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1b were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1b was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence

    Dietary Intervention Modulates the Expression of Splicing Machinery in Cardiovascular Patients at High Risk of Type 2 Diabetes Development: From the CORDIOPREV Study

    Get PDF
    Type-2 diabetes mellitus (T2DM) has become a major health problem worldwide. T2DM risk can be reduced with healthy dietary interventions, but the precise molecular underpinnings behind this association are still incompletely understood. We recently discovered that the expression profile of the splicing machinery is associated with the risk of T2DM development. Thus, the aim of this work was to evaluate the influence of 3-year dietary intervention in the expression pattern of the splicing machinery components in peripheral blood mononuclear cells (PBMCs) from patients within the CORDIOPREV study. Expression of splicing machinery components was determined in PBMCs, at baseline and after 3 years of follow-up, from all patients who developed T2DM (Incident-T2DM, n = 107) and 108 randomly selected non-T2DM subjects, who were randomly enrolled in two healthy dietary patterns (Mediterranean or low-fat diets). Dietary intervention modulated the expression of key splicing machinery components (i.e., up-regulation of SPFQ/RMB45/RNU6, etc., down-regulation of RNU2/SRSF6) after three years, independently of the type of healthy diet. Some of these changes (SPFQ/RMB45/SRSF6) were associated with key clinical features and were differentially induced in Incident-T2DM patients and non-T2DM subjects. This study reveals that splicing machinery can be modulated by long-term dietary intervention, and could become a valuable tool to screen the progression of T2DM

    CDK11 Promotes Cytokine-Induced Apoptosis in Pancreatic Beta Cells Independently of Glucose Concentration and Is Regulated by Inflammation in the NOD Mouse Model

    Get PDF
    Background: Pancreatic islets are exposed to strong pro-apoptotic stimuli: inflammation and hyperglycemia, during the progression of the autoimmune diabetes (T1D). We found that the Cdk11(Cyclin Dependent Kinase 11) is downregulated by inflammation in the T1D prone NOD (non-obese diabetic) mouse model. The aim of this study is to determine the role of CDK11 in the pathogenesis of T1D and to assess the hierarchical relationship between CDK11 and Cyclin D3 in beta cell viability, since Cyclin D3, a natural ligand for CDK11, promotes beta cell viability and fitness in front of glucose. Methods: We studied T1D pathogenesis in NOD mice hemideficient for CDK11 (N-HTZ), and, in N-HTZ deficient for Cyclin D3 (K11HTZ-D3KO), in comparison to their respective controls (N-WT and K11WT-D3KO). Moreover, we exposed pancreatic islets to either pro-inflammatory cytokines in the presence of increasing glucose concentrations, or Thapsigargin, an Endoplasmic Reticulum (ER)-stress inducing agent, and assessed apoptotic events. The expression of key ER-stress markers (Chop, Atf4 and Bip) was also determined. Results: N-HTZ mice were significantly protected against T1D, and NS-HTZ pancreatic islets exhibited an impaired sensitivity to cytokine-induced apoptosis, regardless of glucose concentration. However, thapsigargin-induced apoptosis was not altered. Furthermore, CDK11 hemideficiency did not attenuate the exacerbation of T1D caused by Cyclin D3 deficiency. Conclusions: This study is the first to report that CDK11 is repressed in T1D as a protection mechanism against inflammation-induced apoptosis and suggests that CDK11 lies upstream Cyclin D3 signaling. We unveil the CDK11/Cyclin D3 tandem as a new potential intervention target in T1D

    In1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features

    Get PDF
    Pituitary adenomas comprise a heterogeneous subset of pathologies causing serious comorbidities, which would benefit from identification of novel, common molecular/cellular biomarkers and therapeutic targets. The ghrelin system has been linked to development of certain endocrine-related cancers. Systematic analysis of the presence and functional implications of some components of the ghrelin system, including native ghrelin, receptors and the recently discovered splicing variant In1-ghrelin, in human normal pituitaries (n 5 11) and pituitary adenomas (n 5 169) revealed that expression pattern of ghrelin system suffers a clear alteration in pituitary adenomasas comparedwith normal pituitary, where In1-ghrelin is markedly overexpressed. Interestingly, in cultured pituitary adenoma cells In1-ghrelin treatment (acylated peptides at 100 nM; 24–72 h) increasedGHandACTHsecretion, Ca21 and ERK1/2 signaling and cell viability, whereas In1-ghrelin silencing (using a specific siRNA; 100 nM) reduced cell viability. These results indicate that an alteration of the ghrelin system, specially its In1-ghrelin variant, could contribute to pathogenesis of different pituitary adenomas types, and suggest that this variant and its related ghrelin system could provide new tools to identify novel, more general diagnostic, prognostic and potential therapeutic targets in pituitary tumors

    A Somatostatin Receptor Subtype-3 (SST3) Peptide Agonist Shows Antitumor Effects in Experimental Models of Nonfunctioning Pituitary Tumors

    Get PDF
    [Purpose] Somatostatin analogues (SSA) are efficacious and safe treatments for a variety of neuroendocrine tumors, especially pituitary neuroendocrine tumors (PitNET). Their therapeutic effects are mainly mediated by somatostatin receptors SST2 and SST5. Most SSAs, such as octreotide/lanreotide/pasireotide, are either nonselective or activate mainly SST2. However, nonfunctioning pituitary tumors (NFPTs), the most common PitNET type, mainly express SST3 and finding peptides that activate this particular somatostatin receptor has been very challenging. Therefore, the main objective of this study was to identify SST3-agonists and characterize their effects on experimental NFPT models.[Experimental Design] Binding to SSTs and cAMP level determinations were used to screen a peptide library and identify SST3-agonists. Key functional parameters (cell viability/caspase activity/chromogranin-A secretion/mRNA expression/intracellular signaling pathways) were assessed on NFPT primary cell cultures in response to SST3-agonists. Tumor growth was assessed in a preclinical PitNET mouse model treated with a SST3-agonist. [Results] We successfully identified the first SST3-agonist peptides. SST3-agonists lowered cell viability and chromogranin-A secretion, increased apoptosis in vitro, and reduced tumor growth in a preclinical PitNET model. As expected, inhibition of cell viability in response to SST3-agonists defined two NFPT populations: responsive and unresponsive, wherein responsive NFPTs expressed more SST3 than unresponsive NFPTs and exhibited a profound reduction of MAPK, PI3K-AKT/mTOR, and JAK/STAT signaling pathways upon SST3-agonist treatments. Concurrently, SSTR3 silencing increased cell viability in a subset of NFPTs. [Conclusions] This study demonstrates that SST3-agonists activate signaling mechanisms that reduce NFPT cell viability and inhibit pituitary tumor growth in experimental models that expresses SST3, suggesting that targeting this receptor could be an efficacious treatment for NFPTs.This work has been funded by the following grants: Junta de Andalucía [CTS-1406 (R.M. Luque), BIO-0139 (J.P. Castaño)]; Ministerio de Ciencia, Innovación y Universidades [BFU2016-80360-R (J.P. Castaño)] and Instituto de Salud Carlos III, co-funded by European Union [ERDF/ESF, “Investing in your future”: PI16/00264 (R.M. Luque), CP15/00156 (M.D. Gahete) and CIBERobn]. CIBER is an initiative of Instituto de Salud Carlos III

    Targeted Systemic Treatment of Neuroendocrine Tumors: Current Options and Future Perspectives

    Get PDF
    Neuroendocrine tumors (NETs) originate from the neuroendocrine cell system in the bronchial and gastrointestinal tract and can produce hormones leading to distinct clinical syndromes. Systemic treatment of patients with unresectable NETs aims to control symptoms related to hormonal overproduction an
    corecore