125 research outputs found

    Drought-stressed tomato plants trigger bottom–up effects on the Invasive Tetranychus evansi

    Get PDF
    19 p.-5 fig.-3 tab.Climate change will bring more drought periods that will have an impact on the irrigation practices of some crops like tomato, from standard water regime to deficit irrigation. This will promote changes in plant metabolism and alter their interactions with biotic stressors. We have tested if mild or moderate drought-stressed tomato plants (simulating deficit irrigation)have an effect on the biological traits of the invasive tomato red spider mite, Tetranychus evansi. Our data reveal that T evansi caused more leaf damage to drought-stressed tomato plants ( 1.5 fold for both drought scenarios). Mite performance was also enhanced, as revealed by significant increases of eggs laid ( 2 fold) at 4 days post infestation (dpi), and of mobile forms ( 2 fold and 1.5 fold for moderate and mild drought, respectively) at 10 dpi.The levels of several essential amino acids (histidine, isoleucine, leucine, tyrosine, valine) and free sugars in tomato leaves were significantly induced by drought in combination with mites. The non-essential amino acid proline was also strongly induced, stimulating mite feeding and egg laying when added to tomato leaf disks at levels equivalent to that estimated on drought-infested tomato plants at 10 dpi. Tomato plant defense proteins were also affected by drought and/or mite infestation, but T. evansi was capable of circumventing their potential adverse effects. Altogether, our data indicate that significant increases of available free sugars and essential amino acids, jointly with their phagostimulant effect, created a favorable environment for a better T. evansi performance on drought-stressed tomato leaves. Thus, drought-stressed tomato plants, even at mild levels, may be more prone to T evansi outbreaks in a climate change scenario, which might negatively affect tomato production on area-wide scales.This work was funded by an INIA grant:GENOMITE, Proposal No 618105 FACCE Era Net Plus-Food security, Agriculture, Climate Change (new generation sustainable tools to control emerging mite pests under climate change).Peer reviewe

    La influencia del contenido en el razonamiento predictivo: un estudio evolutivo con estereotipos de género

    Get PDF
    The influence of gender stereotypes on predictive reasoning isanalysed. The sample comprised 120 participants aged 5, 11, and 17, who solved tasks with base rate information on feminine or masculine stereotypes such as activities, professions and physical appearance. The task also used individuating information related to the characteristics of the person performing the activity, profession, or his/her physical appearance. Participants had to decide the sex of the person on the basis of the task data and were asked to explain their choice. The results show that young children pay particular attention to base rate information, the 11-year-olds to the individuating information and the adolescents attempt to integrate the two types. The results indicate that the masculine stereotype is a more stable basis for predictions.Este estudio analiza la influencia de los estereotipos de género en el razonamiento predictivo. La muestra fue de 120 personas de 5, 11 y 17 años que tenían que resolver tareas, conteniendo una información distribucional sobre el estereotipo femenino o masculino como actividades, ocupaciones o apariencia fisica. También se presentaba una informacióndiagnóstica respecto a las caracteristicas de una persona ligadas al estereotipo de género. En cada edad, se manipuló la congruencia de las fuentes de la tarea a favor o en contra del estereotipo. Los participantes tenían que decidir el sexo de una persona teniendo en cuenta los datos presentados y explicar su elección. La tendencia general es que los pequeños prestan sobre todo atención a la información distribucional, los preadolescentes a la información diagnóstica y los adolescentes a ambas por igual, siendo capaces de integrarlas. Los resultados varían en función del estereotipomasculirzo o femenino, siendo en general el primero una base más sólida y estable para hacer predicciones

    Selection criteria for weighting factor in linear regression

    Get PDF
    Poster apresentado no 54th Annual meeting of the International Association of Forensic Toxicologists (TIAFT) 28 de agosto - 1 setembro 2016, Brisbane, AustraliaN/

    Digestive proteases in bodies and faeces of the two-spotted spider mite, Tetranychus urticae

    Get PDF
    31 p.-3 fig.-3 tab.-2 fig. supl.-1 tab. supl.Digestive proteases of the phytophagous mite Tetranychus urticae have been characterised by comparing their activity in body and faecal extracts. Aspartyl, cathepsin B- and L-like and legumain activities were detected in both mite bodies and faeces, with a specific activity of aspartyl and cathepsin L-like proteases about 5- and 2-fold higher, respectively, in mite faeces than in bodies. In general, all these activities were maintained independently of the host plant where the mites were reared (bean, tomato or maize). Remarkably, this is the first report in a phytophagous mite of legumain-like activity, which was characterised for its ability to hydrolyse the specific substrate Z-VAN-AMC, its activation by DTT and inhibition by IAA but not by E-64. Gel free nanoLC–nanoESI-QTOF MS/MS proteomic analysis of mite faeces resulted in the identification of four cathepsins L and one aspartyl protease (from a total of the 29 cathepsins L, 27 cathepsins B, 19 legumains and two aspartyl protease genes identified the genome of this species). Gene expression analysis reveals that four cathepsins L and the aspartyl protease identified in the mite faeces, but also two cathepsins B and two legumains that were not detected in the faeces, were expressed at high levels in the spider mite feeding stages (larvae, nymphs and adults) relative to embryos. Taken together, these results indicate a digestive role for cysteine and aspartyl proteases in T. urticae. The expression of the cathepsins B and L, legumains and aspartyl protease genes analysed in our study increased in female adults after feeding on Arabidopsis plants over-expressing the HvCPI-6 cystatin, that specifically targets cathepsins B and L, or the CMe trypsin inhibitor that targets serine proteases. This unspecific response suggests that in addition to compensation for inhibitor-targeted enzymes, the increase in the expression of digestive proteases in T. urticae may act as a first barrier against ingested plant defensive proteins.This work was supported by a Grant from CSIC (Grant CSIC-201040E049 to F.O), Ministerio de Ciencia e Innovación (Grant AGL11-23650 to I.D.) and the Government of Canada through Genome Canada and the Ontario Genomics Institute (Grant OGI-046 to V.G.), and the Ontario Research Fund-Global Leadership in Genomics and Life Sciences (Grant GL2-01-035 to V.G.).Peer reviewe

    The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    Get PDF
    31 p.-11 fig.-2 tab.+ Erratum (2 p.) Papanikolaou, Alexie et al.Background: The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control.Results: The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A highquality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT.Conclusions: The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolutionSupport of this project was provided by the U.S. Department of Agriculture(USDA), Agricultural Research Service (ARS), Animal and Plant Health Inspection Service (APHIS), and National Institute of Food and Agriculture(NIFA)-Biotechnology Risk Assessment Grants Program (grant #2011-39211-30769 to AMH) for funding the initial phase of this project, and to the National Institutes of Health (NIH)-National Human Genome Research Institute (NHGRI) for funding the medfly genome sequencing, assembly and Maker 2.0 automated annotation as part of the i5K 30 genome pilot project (grant #U54 HG003273 to RAG). The NIH Intramural Research Program, National Library of Medicine funded the NCBI Gnomon annotation and the USDA-National Agricultural Library (NAL) provided support for the WebApollo curation website, with support for manual curation training (to MM-T) provided by NIGMS (grant #5R01GM080203),NHGRI (grant #5R01HG004483), and the U.S. Department of Energy(contract #DE-AC02-05CH11231). Support was provided for: toxin metabolism and insecticide resistance gene studies from MINECO,Spain (AGL2013-42632-R to FO and PH-C); microRNAs, horizontal gene transfer and bacterial contaminant studies from the European Social Fund and National Strategic Reference Framework-THALES (MIS375869 to KB, GT, AGH, and KM) and the U.S. National Science Foundation(DEB 1257053 to JHW); cuticle protein gene studies from USDA-NIFA(grant #2016-67012-24652 to AJR); sex-determination studies from L.R. Campania (grant 5/02, 2008 to GS); male reproduction and sexual differentiation studies from the FAO/IAEA (Technical Contract No: 16966 to GGa) and Cariplo IMPROVE (to FS); and programmed cell death gene studies and genomic data analysis (to MFS) from the Emmy Noether program, DFG(SCHE 1833/1-1) and the LOEWE Center for Insect Biotechnology & Bioresources grant of the Hessen State Ministry of Higher Education, Research and the Arts(HMWK), Germany and from the USDA-NIFA-Biotechnology Risk Assessment Grants Program (grant #2015-33522-24094 to AMH).Peer reviewe

    Quantitative genetic analysis of Cry1Ab tolerance in Ostrinia nubilalis Spanish populations 2

    Get PDF
    Abstract 2 Tolerance to Bacillus thuringiensis Cry1Ab toxin in Spanish Ostrinia nubilalis 3 populations was analyzed by quantitative genetic techniques, using isolines established 4 from field-derived insects. F1 offspring was tested for susceptibility to trypsin activated 5 Cry1Ab using a concentration that caused a mean larval mortality of 87% (± 17% SD). 6 The progeny of the most tolerant isolines (that had shown mortalities lower than 60%) 7 was crossed to obtain the F2 generation that was exposed to the same Cry1Ab 8 concentration. A clear reduction in mortality (62% ± 17% SD) was observed. The upper 9 limit for heritability was estimated to range between 0.82 and 0.90, suggesting that a 1

    Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases

    Get PDF
    Phytocystatins are inhibitors of cysteine-proteases from plants putatively involved in plant defence based on their capability of inhibit heterologous enzymes. We have previously characterised the whole cystatin gene family members from barley (HvCPI-1 to HvCPI-13). The aim of this study was to assess the effects of barley cystatins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of proteolytic activity profile in both mite species showed the presence of the cysteine-proteases, putative targets of cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 protein were generated and the functional integrity of the cystatin transgene was confirmed by in vitro inhibitory effect observed against T. urticae and B. chilensis protein extracts. Feeding experiments impaired on transgenic lines performed with T. urticae impaired mite development and reproductive performance. Besides, a significant reduction of cathepsin L-like and/or cathepsin B-like activities was observed when the spider mite fed on maize plants expressing HvCPI-6 cystatin. These findings reveal the potential of barley cystatins as acaricide proteins to protect plants against two important mite pests

    A barley cysteine-protease inhibitor reduces teh performance of two aphid species in artificial diets and transgenic arabidopsis plants

    Get PDF
    Cystatins from plants have been implicated in plant defense towards insects, based on their role as inhibitors of heterologous cysteine-proteinases. We have previously characterized thirteen genes encoding cystatins (HvCPI-1 to HvCPI-13) from barley (Hordeum vulgare), but only HvCPI-1 C68 → G, a variant generated by direct-mutagenesis, has been tested against insects. The aim of this study was to analyze the effects of the whole gene family members of barley cystatins against two aphids, Myzus persicae and Acyrthosiphon pisum. All the cystatins, except HvCPI-7, HvCPI-10 and HvCPI-12, inhibited in vitro the activity of cathepsin L- and/or B-like proteinases, with HvCPI-6 being the most effective inhibitor for both aphid species. When administered in artificial diets, HvCPI-6 was toxic to A. pisum nymphs (LC50 = 150 μg/ml), whereas no significant mortality was observed on M. persicae nymphs up to 1000 μg/ml. The effects of HvCPI-6 ingestion on A. pisum were correlated with a decrease of cathepsin B- and L-like proteinase activities. In the case of M. persicae, there was an increase of these proteolytic activities, but also of the aminopeptidase-like activity, suggesting that this species is regulating both target and insensitive enzymes to overcome the effects of the cystatin. To further analyze the potential of barley cystatins as insecticidal proteins against aphids, Arabidopsis plants expressing HvCPI-6 were tested against M. persicae. For A. pisum, which does not feed on Arabidopsis, a combined diet-Vicia faba plant bioassay was performed. A significant delay in the development time to reach the adult stage was observed in both species. The present study demonstrates the potential of barley cystatins to interfere with the performance of two aphid specie

    The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    Get PDF
    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control

    Resistance to malathion in field populations of Ceratitis capitata

    Get PDF
    8 páginas, 2 figuras, 4 tablas -- PAGS nros. 1836-1843The Mediterranean fruit ßy, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is considered one of the most economically damaging pests of citrus orchards in Spain. Insecticide treatments for the control of this pest are mainly based on aerial and ground treatments with malathion bait sprays. However, the frequency of insecticide treatments has been increased in some areas of the Comunidad Valenciana in the last years, because of problems with the control of C. capitata.Wehave found that Þeld populations from citrus and other fruit crops from different geographical areas in Spain showed lower susceptibility to malathion (6- to 201-fold) compared with laboratory populations. More importantly, differences in susceptibility could be related to the frequency of the Þeld treatments. A resistant strain (W), derived from a Þeld population, and a susceptible laboratory strain (C) were maintained in the laboratory. The W strain showed cross-resistance to the organophosphate fenthion (10-fold) but not to spinosad. Enzymatic assays showed that acethylcholinesterase activity was less inhibited in vivo by malathion and in vitro by malaoxon (active form of malathion) in adult ßies from the W-resistant strain. Experiments to evaluate the effects of synergists revealed that the esterase inhibitor S,S,S-tributyl phosphorotrithioate (DEF) partially suppressed malathion resistance. Thus, target site insensitivity and metabolic resistance mediated by esterases might be involved in the loss of susceptibility to malathion in C. capitata. Nonetheless, additional biochemical and molecular studies will be required to conÞrm this hypothesisThis work received Þnancial support from CICYT (AGL2004-05169)Peer reviewe
    corecore