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 1 

Abstract 2 

 Tolerance to Bacillus thuringiensis Cry1Ab toxin in Spanish Ostrinia nubilalis 3 

populations was analyzed by quantitative genetic techniques, using isolines established 4 

from field-derived insects. F1 offspring was tested for susceptibility to trypsin activated 5 

Cry1Ab using a concentration that caused a mean larval mortality of 87% (± 17% SD). 6 

The progeny of the most tolerant isolines (that had shown mortalities lower than 60%) 7 

was crossed to obtain the F2 generation that was exposed to the same Cry1Ab 8 

concentration. A clear reduction in mortality (62% ± 17% SD) was observed. The upper 9 

limit for heritability was estimated to range between 0.82 and 0.90, suggesting that a 10 

high part of phenotypic variation in tolerance to Cry1Ab was attributable to genetic 11 

differences. An estimate of the minimum number of segregating factors indicated that 12 

the loci involved in tolerance to Cry1Ab were at least two. The role of the cadherin 13 

gene, which is a B. thuringiensis resistance gene in Lepidoptera, was assessed in the 14 

most tolerant isolines by using an EPIC-PCR marker specifically developed for this 15 

study. Association between cadherin and tolerance was obtained in one tolerant isoline; 16 

however it could be not confirmed by segregation analysis in the F2 progeny because F2 17 

offspring was not viable. Our results indicate that the tolerance trait is common in 18 

Spanish field populations. Quantitative genetic techniques may be helpful for estimating 19 

the influence of genetic factors to Cry1Ab tolerance in O. nubilalis. 20 

 21 
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1 INTRODUCTION  1 

 There is a wide consensus that the European corn borer, Ostrinia nubilalis 2 

Hübner (Lepidoptera: Crambidae), is one of the most devastating pests of maize in 3 

temperate climate regions. Larvae of this species tunnel through the stem of the plant 4 

and feed within the stalk until pupation, causing yield losses. Since 1996, O. nubilalis 5 

has been efficiently controlled by transgenic maize expressing the insecticidal Cry1Ab 6 

protein from Bacillus thuringiensis (Berliner) (Bt). The worldwide adoption of Bt maize 7 

is continually increasing, leaded by the US where plantings of Bt maize reached the 8 

67% of the total maize acreage in 2012 (NASS, 2012). In the European Union (EU), the 9 

cultivation of Bt maize expressing Cry1Ab started in 1998 and to date it is the only Bt 10 

crop allowed for cultivation. A few EU countries have occasionally grown Bt maize for 11 

commercial purposes, but only in Spain the Bt cultivated surface has been steadily 12 

rising since its introduction. In 2012, Spanish Bt maize area covered around 116,000 13 

hectares (Ministerio de Agricultura, Alimentación y Medio Ambiente, 2012) and 14 

represented the 30% of the total maize-cultivated surface. This percentage substantially 15 

increases when some Spanish regions with higher adoption rates (such as the northeast 16 

corner) are considered (Farinós et al., 2011).  17 

 The continuous growing of Bt maize exercises a high selection pressure on the 18 

target pests. It might drive to the arising of the resistance trait in O. nubilalis field 19 

populations, particularly in those areas where the cultivation of Bt maize has been 20 

effectively implemented. In fact, field-evolved resistance of certain lepidopteran pests to 21 

Cry toxins have been reported after massive cultivation of Bt crops (Dhurua and Gujar, 22 

2011; Kruger et al., 2011; Storer et al., 2010). Laboratory selection experiments have 23 

shown that increased levels of resistance to Cry1Ab could be achieved in O. nubilalis 24 

colonies after few generations (Crespo et al., 2009; Coates et al., 2008; Alves et al., 25 
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2006; Farinós et al., 2004). Furthermore, differences in susceptibility to Cry1Ab 1 

protein, attributable to natural variation in sensitivity to the toxin, have been reported 2 

for O. nubilalis field populations (Saeglitz et al., 2006; Farinós et al., 2004; Siegfried et 3 

al., 2001; Marçon et al., 1999). However, in spite of the intense selection pressure 4 

exerted by the Bt maize and the potential to evolve resistance displayed by laboratory 5 

experiments, resistance monitoring plans carried out in North America and Spain did 6 

not detect a decrease in susceptibility of O. nubilalis larvae to Cry1Ab after the 7 

introduction of Bt maize (Siegfried and Hellmich, 2012; Farinós et al., 2004). 8 

 In most cases, resistance to Cry toxins in Lepidoptera fit with a single locus 9 

model (Ferré et al., 2008). However, the genetic characterization of three O. nubilalis 10 

resistant strains revealed that laboratory-selected resistance to Cry1Ab had a polygenic 11 

inheritance in this species (Crespo et al., 2009; Alves et al., 2006). Quantitative genetic 12 

techniques have been applied to study insecticide resistance in Lepidoptera (Alinia et 13 

al., 2000; Firko and Hayes, 1991; Tabashnik and Cushing, 1989) and they may be used 14 

to study the genetic basis of resistance in O. nubilalis field populations. These 15 

techniques provide estimates of genetic parameters whatever the number of genes 16 

involved since they only require an observed or assumed continuous distribution of 17 

phenotypes (Firko and Hayes, 1990; Tabashnik and Cushing, 1989). Natural variation in 18 

resistance phenotype can be parted in environmental and genetic components, and the 19 

overall heritable genetic variation can be quantified. 20 

The mode of action of the Cry1A proteins is very complex but the binding to a 21 

receptor located in the larval midgut (as cadherin, cdh) is a key step (Vachon et al., 22 

2012). High levels of resistance can be achieved by the alteration of the receptor 23 

binding (Ferré et al., 2008) and in three lepidopteran species mutations in the cdh gene 24 

have been genetically linked with the resistance trait (Gahan et al., 2001; Morin et al., 25 
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2003; Xu et al., 2005). Contribution of cdh gene to the Cry1Ab resistance in O. 1 

nubilalis may be assessed by using molecular markers, such as PCR-RFLP (Coates et 2 

al., 2005) or exon-primed intron crossing (EPIC) PCR. This last technique detects intron 3 

polymorphisms by using primers designed on the flanking exons (Lessa, 1992). The 4 

EPIC-PCR markers are co-dominant, segregate according the Mendelian inheritance, 5 

and have been developed and used for genetic surveys in organisms that lack sufficient 6 

DNA sequence data (Arias et al., 2009; Bierne et al., 2000) or for gene mapping 7 

(Wydner et al., 1994). 8 

 The objective of this study was to examine the variation in tolerance to Cry1Ab 9 

in O. nubilalis through a quantitative genetic approach, by using a selection strategy 10 

based on single-pair mating isolines derived from larvae collected in Spanish 11 

commercial maize fields. Moreover, the association between cdh gene and Cry1Ab 12 

tolerance was assessed using an EPIC-PCR marker specifically developed for this 13 

study.  14 

 15 

2 MATERIALS AND METHODS 16 

2.1 Insect collection, rearing and bioassay  17 

 The O. nubilalis populations used in the present study were obtained from 18 

diapausing last instar larvae collected in 2004 from two important Spanish maize 19 

growing areas, one (E) located in the Northeast (Ebro Valley) and another (B) in the 20 

Southwest (Badajoz), by dissecting damaged stalks from commercial maize fields. The 21 

larvae were moved to the laboratory to establish laboratory field-derived populations. 22 

The process used for the rearing is described in detail by Farinós et al. (2004).  23 

 For single-pair mating, each adult pair was confined in an oviposition cage 24 

consisting of a plastic cup (15.5 cm high x 6 cm diameter) with a fine mesh at its end, 25 
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placed over and opposed to another plastic cup (7 cm high x 7 cm diameter). Cotton 1 

soaked with a 10% honey solution was placed in the oviposition cages for feeding. The 2 

top of each cage was covered with a black waxed paper sheet for the oviposition. After 3 

3 and 7 days, egg masses were collected and transferred to plastic boxes containing 4 

moistened filter paper until hatching. Cages for mating, oviposition and eggs incubation 5 

were placed in a growth chamber (Sanyo MLR-350H, Sanyo, Japan) maintained at 25 ± 6 

0.5 °C, 70 ± 5% RH, and with photoperiod of 16:8 h (L:D). 7 

 Bioassays were performed with trypsin activated Cry1Ab toxin solubilized in 8 

CAPS buffer (pH 10.5), kindly provided by the laboratory DLR Rheinpfalz 9 

(Neustadt/Weinstrasse, Germany). For testing larval tolerance, we decided to use a 10 

threshold Cry1Ab concentration (40 ng/cm2) which was expected to cause about 90% of 11 

mortality according to our previous data (Farinós et al., 2004), to ensure the survival of 12 

only the more tolerant individuals. We used the term tolerance in the sense defined by 13 

Finney (1971), to refer to a quantitative measure of resistance that is normally 14 

distributed among individuals within a population. The toxin dilution was applied on the 15 

surface of artificial diet solidified in the wells of a 128-well plastic tray (Bio-Ba-128, 16 

Color-Dec Italy, Capezzano Pianore, Italy). Trays were let dry in a laminar flow hood 17 

and immediately five to seven neonate larvae were placed in each well and confined 18 

with a cover (Bio-Cv-16, Color-Dec Italy, Capezzano Pianore, Italy). Trays were 19 

incubated in the growth chamber at 25 ± 0.3 °C, 70 ± 5% RH, and constant dark. Larval 20 

mortality was recorded after 7 days. The larvae were considered dead if they did not 21 

show any reaction when prodded. In this study, we refer to the larvae that survived to 22 

the Cry1Ab screening as tolerant. Control mortality never exceeded 5%. 23 

2.2 Isoline establishment and screening for the Cry1Ab tolerance genetic basis 24 
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 A full siblings experimental design was used to investigate the genetic basis of 1 

tolerance to Cry1Ab (Figure 1). We started with 110 crosses between two adults, each 2 

one from one of the two different geographical locations (B x E and reciprocal cross E x 3 

B). The offspring (F1) of the pairs that oviposited more than 80 eggs was divided into 4 

two parts within the isolines: the bioassayed and the control groups. The bioassayed 5 

group consisted in about 125 neonates per isoline that were exposed to the Cry1Ab 6 

protein. After seven days, mortality was recorded and tolerant larvae were moved to 7 

non-supplemented artificial diet, where they were reared until the third instar. At this 8 

point, tolerant larvae from isolines which showed a percentage of mortality higher than 9 

60% were frozen while tolerant larvae from isolines with mortality less than 60% 10 

(called IT isolines) were reared until the adult stage. Neonate larvae of the control group 11 

were reared on non-supplemented artificial diet until the third instar, and then frozen.  12 

 Tolerant adults from IT isolines were single-pair mated within each isoline 13 

(forming the sib-IT subfamilies) to obtain the next generation (F2). Again, the F2 14 

progeny of each sib-IT subfamily was divided in two groups: the bioassayed and the 15 

control groups. The bioassayed larvae were challenged with the same concentration of 16 

Cry1Ab toxin used in the bioassays with the previous generation, following the 17 

procedure described before. Larvae from control group were reared until the third instar 18 

without Cry1Ab exposure and then frozen. 19 

2.3 Data analysis 20 

 The estimate of the heritability of tolerance to Cry1Ab was determined 21 

considering the mortality recorded after Cry1Ab exposure as a threshold character with 22 

tolerance as underlying continuous variable (Falconer and Mackay, 1996) since our 23 

methodology could not directly measure the tolerance level of each individual insect. 24 

The heritability of tolerance to Cry1Ab was estimated by using two different methods: 25 
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the first one based on variances among families in the unselected F1 generation 1 

(Tabashnik and Cushing, 1989; Bull et al., 1982) and the other one based on the actual 2 

response to selection from one generation to the next (Firko and Hayes, 1990). 3 

 The first method, called the contingency method, was initially described by Bull 4 

and coworkers (1982) and later adapted by Tabashnik and Cushing (1989) to estimate 5 

heritability of insecticide resistance. As the proportion (p) of the population expressing 6 

the tolerance trait (i.e., proportion of survivors) in the unselected generation F1 was 7 

different from 0.5, the ρx value was determined from tables for computing bivariate 8 

normal probabilities (Owen, 1962), using the formula described by Bull et al. (1982). 9 

The heritability of tolerance was calculated as 2ρx for full siblings. In this full siblings 10 

analysis, variation between families is often increased by the common environment and 11 

the dominance variance; thus our estimate of heritability only sets an upper limit 12 

(Falconer and Mackay, 1996). 13 

 In the second method, we used the proportion of tolerant individuals (in this case 14 

the survivors to the Cry1Ab treatment belonging to families with mortality lower than 15 

60%) in F1 and F2 generations, to calculate the regression coefficient of offspring on 16 

one parent (b). In this model, the estimate of heritability of tolerance is obtained from 17 

the formula: 18 

19 
where µs represents the mean of the underlying trait (tolerance) of the larvae that 20 

survived the treatment with the insecticidal toxin Cry1Ab and had offspring, and µ´ 21 

represents the mean of the tolerance in the F2 generation. Both values were obtained 22 

applying the method described by Hartl and Clark (1989) that uses the proportion of 23 

tolerant individuals scored in each generation. The interpretation of the correlation of 24 

tolerance between relatives in terms of heritability is subject to uncertainties about 25 

ℎ2 = 2𝑏𝑏 = 2𝜇𝜇′/𝜇𝜇𝑠𝑠 
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resemblances due to the common environment (Falconer and Mackay, 1996), thus also 1 

in this case the estimate of heritability represents the upper limit. 2 

 The minimum number of independently segregating genes with equal and 3 

additive effects on the tolerance to Cry1Ab was calculated using the method proposed 4 

by Lande (1981) to estimate the effective number of genetic factors (nE) influencing a 5 

particular trait within a population. The estimate was obtained with the formula: 6 

7 
where σ2 is the variance recorded in each generation and n is the number of generations. 8 

To find the sampling variance of the underlying trait (tolerance) which mean is the 9 

normal deviate x for the corresponding p (proportion of the population expressing the 10 

tolerance trait) we used the formula: 11 

12 
where i is the mean deviation of tolerant individuals from the population mean 13 

(tabulated by Falconer and Mackay, 1996) and A is the number of tolerant individuals. 14 

 To compare the mortality values among groups of isolines (total isolines and IT 15 

isolines) and generations we used the non-parametric Mann-Whitney test implemented 16 

in the GraphPad Prism 5 software (GraphPad software, La Jolla, CA, USA). The same 17 

test was used to detect differences in mortality in F1 generation among isolines 18 

depending from the origin of the founders. We used ANOVA to determine if the arcsine 19 

transformed mortality frequencies were significantly different among sib-IT subfamilies 20 

depending from the IT isoline of origin. 21 

 In the association studies between cdh alleles and tolerance we compared the 22 

allelic frequencies between tolerant and control groups within each IT isoline by the χ2 23 

test. 24 

𝑛𝑛𝐸𝐸 =
�∑ 𝜎𝜎𝑖𝑖2𝑛𝑛

𝑖𝑖=1 �2

∑  𝑛𝑛
𝑖𝑖=1 �𝜎𝜎𝑖𝑖2�

2 

𝜎𝜎𝑥𝑥2 = (1 − 𝑝𝑝)/𝑖𝑖2𝐴𝐴 
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2.4 DNA extraction, PCR reactions and cloning 1 

Total genomic DNA was extracted from the thorax of frozen parental adults or 2 

from frozen whole larvae, using the PrepManTM Ultra reagent (Applied Biosystems, 3 

Foster City, CA, USA) following the manufacturer’s instructions. DNA quality was 4 

checked by agarose gel 1% staining with ethidium bromide.  5 

The EPIC marker used to study cdh allele segregation was selected for the 6 

maximum size variability, after comparing all the cdh regions (data not shown). We 7 

previously demonstrated that Bt related cdh from O. nubilalis is a single copy nuclear 8 

gene (Bel et al., 2011), suitable to be studied in inheritance analysis. Primers 3.14 L (5’- 9 

CCTAGGCGAGGAGTCTAT - 3’) and 3.14 R (5’ - 10 

CGAGCCGTACTTCGTCATGGAGAG  - 3’) anneal on the exons 31 and 32 of the cdh 11 

gene and the amplification results in a fragment containing only one intron. Both 12 

primers were designed with Primer3 software (Whitehead Institute for Biomedical 13 

Research, MA, USA) and purchased from GenScript Corporation (Piscataway, NJ, 14 

USA). Amplification reactions were carried out by using ≤ 1 μg of total DNA as 15 

template, in a final volume of 25 μl containing 0.4 U of Expand High Fidelity Taq 16 

polymerase (Roche Diagnostics, Mannheim, Germany), 0.2 mM of each dNTP, 0.3 μM 17 

of each primer and the buffer provided with the Taq enzyme, using an Eppendorf 18 

Thermal Cycler (Hamburg, Germany). The reaction conditions included an initial step 19 

of denaturation at 94°C for 5 min, 35 cycles composed by denaturation at 94°C for 30 20 

sec, primers annealing at 55°C for 30 sec and elongation at 72°C for 2 min, and a final 21 

elongation step at 72°C for 5 min. Amplification products were separated in 1% agarose 22 

gel and stained with ethidium bromide to detect size variations. Each amplified marker 23 

was sequenced to confirm the identity. For this purpose, PCR amplicons were gel 24 

purified using the GFXTM PCR DNA and Gel Band Purification Kit (GE Healthcare, 25 
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Buckinghamshire, UK) following the manufacturer’s instructions, and cloned in the 1 

pGEM-t Easy Vector (Promega, Madison, WI, USA) with ligation O/N at 4°C. The 2 

resulting constructs were cloned in competent Escherichia coli cells DB3.1 and the 3 

positive colonies were screened by colony PCR. The plasmids were purified with the 4 

High Pure Plasmid Purification Kit (Roche Diagnostics) and sequenced at the IBMCP 5 

sequencing facilities (Valencia, Spain) using M13 primers. Sequences were aligned and 6 

analyzed with the SeqMan software (DNAStar, Madison, WI, USA). In the EPIC-PCR 7 

markers variability analysis, only indels (insertion/deletion) were scored, while SNPs 8 

identified were not used for allele characterization.  9 

 10 

3 RESULTS 11 

3.1 Genetic basis of Cry1Ab tolerance 12 

One hundred and ten single-pair matings were established from field-derived O. 13 

nubilalis populations from two representative Spanish Bt maize areas. Fifty-three pairs 14 

laid eggs enough to establish an isoline and to test the offspring, and the mean of the 15 

bioassayed larvae was 123 (± 58 SD) per isoline (Table 1). The mortality caused by 16 

Cry1Ab toxin in the F1 generation varied extensively among families, ranging from 24 17 

to 100% (Figure 2), with a mean mortality per isoline of 87% (± 17% SD) (Table 1); 18 

nine isolines (17% of the total) had no survivors after the treatment. The overall 19 

mortality observed was similar to the expected, based on our previous analyses of field 20 

Spanish populations (Farinós et al., 2004). As we used a high toxin dose causing about 21 

90% of mortality, the distribution of the mortality frequencies was significantly 22 

different from a normal distribution (Shapiro-Wilk test, W = 0.7301, P < 0.0001). Sex 23 

bias in the mortality values due to the origin of the founders of the isolines was not 24 

evidenced, because the mean mortalities of the progenies derived from the reciprocal 25 
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parental crosses did not significantly differ (B x E = 88 ± 16% SD; E x B = 86 ± 19% 1 

SD; Mann-Whitney test, U = 263; P = 0.1426).  2 

Mortality values recorded in F1 generation varied continuously from 70 to 3 

100%, with the exception of five isolines (#1, #7, #76, #81 and #109), the 9% of the 4 

total (Figure 2). These isolines, called IT isolines, exhibited a larval mortality rate after 5 

the treatment with Cry1Ab below 60%. The mean mortality of the IT isolines was 44% 6 

(± 14% SD) significantly lower than the one of the whole F1 generation (87 ± 17%) 7 

(Mann-Whitney test, U = 14.5, P<0.01) (Table 1). To test if tolerance exhibited by the 8 

IT isolines was a genetically determined trait, tolerant insects from IT isolines were 9 

single-pair mated within each isoline and the offspring (corresponding to F2 generation) 10 

was challenged with the same Cry1Ab doses used in the previous assays. From IT 11 

isolines #1 and #7 was possible to make only three single-pair matings for each one and 12 

no viable offspring was obtained. The other three IT isolines (#76, #81 and #109) 13 

allowed the establishment of 31 single-pair matings which laid enough eggs (314 ± 81) 14 

for the bioassays (Table 1). Mortality per subfamily in F2 generation ranged from 28 to 15 

89% with a mean of 62% (± 17% SD) (Figure 2) that means a significant reduction with 16 

respect to the overall mortality showed by the previous generation (87 ± 17%) (Mann-17 

Whitney test, U = 203, P<0.01) (Table 1). In addition, 100% of mortality in F2 18 

subfamilies was never obtained, whereas in the F1 generation the 17% of the isolines 19 

had no survivors. The distribution of mortality frequencies in F2 generation was 20 

essentially continuous and, differently from the F1 generation, did not deviate from a 21 

normal distribution (Shapiro-Wilk test, W = 0.9712, P = 0.5526). The overall results 22 

evidenced a shift of the tolerance level after only one generation that indicates a fast 23 

response to the selection pressure (Figure 2). Within the F2 generation, ANOVA did not 24 

detect differences among mortality means depending on the isoline of origin of the sib-25 
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IT subfamilies (Table 1) (F = 0.1901, P = 0.347), indicating a similar response of all 1 

isolines to the Cry1Ab selection. 2 

The upper limit for heritability of tolerance to Cry1Ab in our O. nubilalis sample 3 

was estimated to be 0.90, using the method described by Bull et al. (1982) based on 4 

variance among families. This value indicates that up the 90% of the phenotypic 5 

variation in the population may be due to additive genetic variation. When the 6 

heritability of tolerance was estimated using the method based in response to the 7 

selection, the result was 0.82. Also in this second case, the common environment where 8 

insects were kept could inflate the estimate and 0.82 represents the upper limit for 9 

heritability.  10 

Analysis with the Lande’s method indicated that tolerance was not controlled by 11 

a single major gene. Lande’s formula based on population variances recorded along the 12 

selection yielded an estimate of 2 for the minimum number of effective segregating 13 

factors with equal effect on Cry1Ab tolerance. 14 

3.2 Segregation of the cadherin alleles in the IT isolines 15 

The cdh EPIC-PCR amplifications performed on the DNA from ten parental 16 

adults (IT isolines founders) resulted in the identification of five alleles (called allele A 17 

to E) that showed length polymorphism plus a non-amplified fragment (null allele, 18 

allele N) (Table 2). The amplicon sizes of the alleles A to E ranged from 758 to 1444 19 

bp, and sequenciation evidenced that size differences were based on indels in the 20 

intronic region. Six out of ten individuals analyzed were heterozygous for the cdh gene. 21 

The level of heterozygosity obtained in the amplifications with our marker (0.6) did not 22 

differ from the expected heterozygosity (0.8) based on the Hardy-Weinberg equilibrium, 23 

as indicated by the P-value of the Fisher’s exact test (0.626). Mendelian inheritance of 24 

cdh alleles in the control progenies was observed in all the IT isolines analyzed (Table 25 
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3) since the observed genotypes did not significantly deviated from expected ratios, 1 

although we detected a non-amplifying EPIC-PCR marker. This fact suggested that its 2 

sequence was unambiguous and associated to only one cdh allele. This data set pointed 3 

out that the EPIC-PCR marker selected in this work was appropriate for the inheritance 4 

analysis of the cdh gene. 5 

The IT isoline #7 was discarded from the analysis of cdh segregation because 6 

resulted not informative since all the individuals of the F1 generation were heterozygous 7 

for both the N and C alleles (Table 3). In three out of the other four IT isolines, the 8 

genotype ratios observed in control group compared with tolerant individuals were not 9 

statistically different, neither in F1 nor in the F2 generations, indicating no association 10 

between their cdh alleles and the tolerance trait (Table 3). However, the isoline #1 11 

showed statistically different genotype ratios between control and tolerant insects, 12 

suggesting association between tolerance and cdh alleles present in this isoline (Table 13 

3). This observation could not be confirmed by the analysis of cdh segregation in F2 14 

generation, because single-pair matings of F1 tolerant adults from isoline #1 did not 15 

produce any viable offspring. It should be noted that the predominant genotype in the 16 

group of tolerant larvae from the isoline #1 was CD. However, the alleles C and D were 17 

present in the genotypes of tolerant individuals from other IT isolines, for which no 18 

differences were observed in genotype ratios between control and tolerant larvae. 19 

 20 

4 DISCUSSION AND CONCLUSIONS 21 

Previous genetic analysis of three different laboratory-selected O. nubilalis resistant 22 

strains described the resistance to Cry1Ab as incompletely recessive and controlled by 23 

more than one locus (Crespo et al., 2009; Alves et al., 2006), in contrast to what 24 

happens in the majority of the resistant strains of other lepidopteran species selected 25 
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with Cry toxins (Ferré et al., 2008). In addition, variations in susceptibility to Cry1Ab 1 

have been reported in field populations of O. nubilalis (Saeglitz et al., 2006; Farinós et 2 

al., 2004; Siegfried et al., 2001; Marçon et al., 1999). These two evidences suggested 3 

that tolerance to Cry1Ab, present in varying degrees in O. nubilalis field populations, 4 

may be studied from the genetic point of view of a quantitative trait. Our results are 5 

consistent with the hypothesis that some of the variation in tolerance within O. nubilalis 6 

populations has a polygenic inheritance, since we found significant heterogeneity in 7 

mortality among isolines that could be reduced in the F2 generation after selection. In 8 

fact, the variation in tolerance determined by polygenic inheritance is normally 9 

distributed within a population and essentially continuous (Tabashnik and Cushing, 10 

1989), resulting in a wide range of responses as we have observed in the present study.  11 

The estimates of the upper limit of heritability for tolerance to Cry1Ab made by 12 

using two different methods were 0.90 and 0.82. Both values indicate that high levels of 13 

additive genetic variation in larval tolerance to Cry1Ab toxin were present in the O. 14 

nubilalis Spanish field-derived populations under study. The full siblings approach used 15 

in this study only provides an upper limit for heritability because the common 16 

environment and the dominance variance could inflate the estimates (Falconer and 17 

Mackay, 1996). However, Tabashnik and Cushing (1989) found that the overestimation 18 

bias introduced by experiments with full siblings may be expected as < 10%. Therefore, 19 

the heritability of tolerance to Cry1Ab estimated in this study is can be considered high, 20 

but comparable with the highest heritability estimates of insecticide resistance obtained 21 

in other insect pests reviewed by Omer and coworkers (1993). In the case of the B. 22 

thuringiensis toxins, a heritability of tolerance to Cry1Ab of 0.52 was found for a small 23 

sample of Chilo suppressalis from Philippines (Alinia et al., 2000), and Tabashnik 24 

(1994) reported that realized heritability of resistance to Bt products in seven different 25 
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lepidopteran species ranged from 0.04 to 0.61.. However, it should be noted that 1 

realized heritability after the first generation of selection often underestimates the 2 

heritability in the base population (Falconer and Mackay, 1996).. In O. nubilalis, the 3 

estimates of the realized heritability for Dipel resistance in five different field-collected 4 

colonies ranged from 0.16 to 0.46 in the first six generations but decreased to 0 – 0.08 5 

in the last part of the selection process, when authors supposed to have obtained a 6 

homogeneous resistance (Huang et al., 1999).  7 

Estimates of genetic parameters like heritability are specific to the conditions under 8 

which they were made, which means that heritability is not only a property of a genetic 9 

trait but also of the population, the environment and the experimental measurements 10 

(Falconer and Mackay, 1996; Firko and Hayes, 1990). Therefore, predictions based on 11 

heritability estimates should be made with caution (Alinia et al., 2000). If the 12 

heritability of tolerance in O. nubilalis populations under field conditions is as high as 13 

the one estimated in our study, then the long term use of Bt products for controlling this 14 

pest (like Bt maize expressing Cry1Ab toxin) would be seriously threatened by the 15 

resistance apparition. So far, the strategy widely used for delaying evolution of insect 16 

resistance to Bt crops is based on the creation of refuges for the random mating between 17 

susceptible and resistant insects and on the expression of high concentration of Cry 18 

toxins that reduce the dominance of the resistance and result into a decrease of the 19 

heritability sufficient to decrease the response to selection (Tabashnik et al., 2004). Up 20 

to now, this strategy has been highly effective in delaying apparition of O. nubilalis 21 

resistant individuals under field conditions as no resistance incidences have been 22 

reported (Farinós et al., 2004; Siegfried et al., 2001) or no major resistance alleles have 23 

been detected (Hellmich and Siegrfried, 2012; Engels et al., 2011). 24 
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In the present study, the 9% of the isolines, challenged with a Cry1Ab dose that 1 

caused an overall mean mortality of 87%, showed a significant higher survival rate. 2 

This means that the occurrence of the Cry1Ab tolerance trait is frequent in our Spanish 3 

field-derived populations. Previously, some authors reported that partial resistance 4 

alleles were common in field populations from France and USA (Bourguet et al., 2003; 5 

Andow et al., 2000). Larvae carrying partial resistance alleles could not complete the 6 

development on Bt maize expressing Cry1Ab, but they caused more injury to Bt plants 7 

than totally susceptible larvae (Andow et al., 2000). The additive effect of these alleles 8 

(together with the environment) could result into a continuous variation of the tolerance 9 

phenotype similar to the one detected in our study. Under this point of view, the 10 

common presence of partial resistance alleles in O. nubilalis populations might favor 11 

the evolution of a polygenic resistance under laboratory selection conditions (as the one 12 

emerged in this study or the ones described by Crespo et al., 2009 and Alves et al., 13 

2006). However, Bt maize expressing a high dose of Cry1Ab toxin may only lead to a 14 

monogenic resistance caused by rare alleles, which has never been detected in O. 15 

nubilalis species (Siegfried and Hellmich, 2012). In accordance with this, up to now no 16 

resistant larvae of O. nubilalis strains selected with Cry1Ab were able to develop on 17 

commercial Bt maize plants (Crespo et al., 2009; Siqueira et al., 2004). The common 18 

occurrence of partial resistance alleles in natural populations should be considered, to 19 

avoid false early resistance detection in case of small changes in susceptibility to 20 

Cry1Ab toxin. Besides, it would be interesting to investigate if these partial tolerance 21 

alleles could act as modifier loci in the action of a major resistance allele, influencing 22 

the emergence of resistance (Andow et al., 2000).   23 

 Monogenic inheritance of tolerance is associated with a decrease of the standard 24 

deviation of the mortality values along the selection process, because a single genotype 25 
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would be quickly selected. In the case of several genes involved in the tolerance, the 1 

standard deviation would remain constant, and the selection response would be weak. 2 

Our results showed similar standard deviation values among isolines and generations, 3 

suggesting a polygenic inheritance of the tolerance. However, the fast response obtained 4 

to the selection (shown by a clear reduction in the mean mortality in just one 5 

generation) pointed out to few genes involved. Analysis of the minimum number of 6 

freely segregating factors by using the Lande’s method estimated that tolerance to 7 

Cry1Ab was influenced by at least two loci. Previous studies with laboratory Cry1Ab 8 

resistant colonies of O. nubilalis estimated (with Lande’s method and direct and indirect 9 

tests based on mortality recorded in backcross progeny) that the number of genes 10 

involved in resistance of the SKY colony was from 2.6 to 5 (Crespo et al., 2009), while 11 

in the resistant colonies Europe-R and RSST-R was higher than 10 (Alves et al., 2006). 12 

These results only provide indirect evidences for the additive contribution of a multiple 13 

number of loci to the tolerance or resistance phenotype in the O. nubilalis laboratory 14 

selected strains studied. Only linkage mapping could provide the direct evidence of a 15 

polygenic inheritance of the Cry1Ab tolerance. Nevertheless, to the date no genes have 16 

been genetically associated with resistance in O. nubilalis.   17 

One of the candidate Cry resistance genes is cdh, which was genetically linked to 18 

resistance in three lepidopteran species: Heliotis virescens, Pectinophora gossypiella 19 

and Helicoverpa armigera (Gahan et al., 2001; Morin et al., 2003; Xu et al., 2005). Its 20 

role in the toxicity process caused by Cry1Ab in O. nubilalis was demonstrated by an ex 21 

vivo study which correlated the expression of the O. nubilalis cdh in sf9 cells with the 22 

increased susceptibility to Cry1Ab (Flannagan et al., 2005). However, several studies 23 

with O. nubilalis resistant strains did not clarify the involvement of the cdh in resistance 24 

to Cry1Ab toxin (Bel et al., 2009; Khajuria et al., 2009; Coates et al., 2008). We 25 
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investigated cdh allele segregation in the isolines selected for the tolerance trait using an 1 

EPIC-PCR marker specifically developed for this study. This marker showed a random 2 

pattern of indels and followed the Hardy-Weinberg equilibrium. Only the presence of a 3 

null allele could affect its usefulness; however we observed that it did not interfere with 4 

the Mendelian segregation. We detected six size alleles whose differences were due to 5 

intron indels, confirming the genetic variation for the cdh locus that was described in 6 

previous reports (Bel et al., 2009; Coates et al., 2005). One out of the five tolerant IT 7 

isolines (isoline #1) showed significant differences in the genotype ratios of tolerant 8 

insects compared with controls, being CD the predominant genotype in tolerant 9 

individuals. However, the alleles C and D were also present in other IT isolines that did 10 

not exhibit such association, even though never combined together as CD genotype. It is 11 

worth to note that the association between cdh and tolerance could not be confirmed by 12 

segregation analysis in the F2 generation, because isoline #1 did not produce viable F2 13 

progeny. Although these findings appear to reject the implication of the C and D cdh 14 

alleles in the tolerance, it cannot be completely discarded since their whole sequences 15 

have not been determined. 16 

In summary, the analysis of field-derived O. nubilalis populations collected in 17 

Spanish maize fields has revealed the common occurrence of Cry1Ab tolerance trait, 18 

which can be studied with quantitative genetic techniques. Analysis of the effective 19 

number of genetic factors indicated that few loci (at least two) contribute to the 20 

tolerance phenotype and that cdh could be one of them; further studies should be 21 

performed to confirm this implication and to identify other loci involved in tolerance. 22 

The results obtained in the present work have a special relevance from the resistance 23 

management point of view. The monitoring of field evolved resistance should be aware 24 

about the relevance to track and deal with the O. nubilalis tolerance trait since it may 25 
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confer to the insects the ability to survive on Bt plants during short periods of time, 1 

which would enhance the conditions for a potential development of resistance. 2 

 3 
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FIGURE CAPTIONS 1 

Figure 1. Diagram of the selection process. 2 

Figure 2. Distribution of mortality per isoline, obtained in F1 and F2 generations. Mortality 3 

was recorded after 7 days of Cry1Ab exposure. White bars indicate F1 generation whereas 4 

grey bars indicate F2 generation. Arrow heads indicate IT isolines (selected to found the F2 5 

generation because they had shown less than 60% of mortality in F1 generation).  6 

 7 

 8 
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TABLES 

Table 1. Larval survival of field-derived O. nubilalis isolines exposed to 40 ng of Cry1Ab per cm2 of artificial diet 

 
F1 generation F2 generation 

Overall 
Isolines 

IT isolinesa Overall Sib-IT 
subfamilies 

Sib-IT 
subfamilies #76 

Sib-IT 
subfamilies #81 

Sib-IT  
subfamilies #109 

No. of single-pair matings  110 - 52 15 20 11 

No. of isolines screened 53 5 31 11 15 5 

No. of eggs laid 

(mean ± SD)b 

15242 

(288 ± 78) 

1478 

(246 ± 83) 

9743 

(314 ± 81) 

4173 

(379 ± 66) 

4390 

(293 ± 65) 

1180 

(236 ± 41) 

No. of Cry1Ab treated larvae 

(mean ± SD)b 

6506 

(123 ± 58) 

760 

(152 ± 42) 

3410 

(110 ± 50) 

1443 

(131 ± 51) 

1675 

(112 ± 45) 

292 

(58 ± 25) 

Mortality (%)c 

(min-max) 

87 ± 17 

(24-100) 

44 ± 14 

(24-56) 

62 ± 17 

(28-89) 

60 ± 16 

(29-87) 

66 ± 17 

(28-89) 

55 ± 16 

(35-73) 

a Isolines that showed mortality lower than 60% in the F1 progeny, used to found the Sib-IT subfamilies; 

b mean ± SD per isoline; 

c Data (mean ± SD per isoline) recorded after 7 days of Cry1Ab exposure. 



Table 2. EPIC-PCR cdh alleles detected in the founders of the IT isolines 

Allele name GenBank acc. number PCR product length Intron length 

A HQ185401 1444 bp 1287 bp 

B HQ185402 1219 bp 1062 bp 

C HQ185403 1024 bp 867 bp 

D HQ185404 827 bp 670 bp 

E HQ185405 758 bp 601 bp 

N - No amplifying - 



Table 3: cdh genotypic ratios observed in the F1 and F2 generations of O. nubilalis IT isolines 

Isoline 
 

Generation (Mean 
mortality) 

na Parental genotypes Offspring 
Genotype 

Frequency P-value (df)b 

  Control 
larvae 

Tolerant 
Larvae 

♀   x   ♂  Control 
larvae 

Tolerant 
Larvae 

 

#1  F1 (58.8%) 20 20 AD   x   CC AC
 
 0.65 0.3 0.027 (1) 

      CD 0.35 0.7  

#7  F1 (37.1%) 10 10 NN   x   CC CN 1  1  1 (1) 

#76  F1 (56.3%) 10 22 DN   x   BN BD 0.5 0.3 0.943 (3) 

      BN 0.1 0.1  

      DN 0.2 0.3  

      NN 0.2 0.3  

#81  F1 (23.8%) 10 30 CE   x   AB AC 0.2 0.2 0.661 (3) 

      AE 0.2 0.1  

      BC 0.3 0.3  

      BE 0.3 0.4  



#109  F1 (44.3%) 10 10 AA   x   CN AC 0.5 0.4 0.653 (1) 

      AN 0.5 0.6  

#76-P8c  F2 (28.8%) 10 10 NN   x   DN DN 0.3 0.4 0.639 (1) 

      NN 0.7 0.6  

#81-P11c  F2 (27.6%) 10 10 AC   x   AC AC 0.5  0.5 1 (2) 

      AA 0.2 0.2  

      CC 0.3 0.3  

#109-P10c  F2 (39%) 10 10 AN   x   AC AA/AN 0.6 0.6  0.565 (2) 

      AC 0.1 0  

      CN 0.3 0.4  

a Number of individuals analyzed for cdh segregation; 

b P-values obtained with χ2 test, comparing the genotype ratios recorded in the control and in the larvae tolerant to Cry1Ab; 

c SibIT-subfamilies showing the lowest mortality value within each isoline 
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