97 research outputs found

    Fallout nuclides in Atlantic and Pacific water columns : GEOSECS data

    Get PDF
    This report contains results of measurements of the fallout radionuclides 90Sr, 137Cs , 239,240Pu , and 241Am in large volume seawater samples collected between 1972 and 1974 in the Atlantic and Pacific as part of Geochemical Ocean Sections (GEOSECS) program. The stations for which data are reported include both the North and South Atlantic oceans and latitudes north of 20° S in the Pacific Ocean. The 90Sr and 137Cs data set has been corrected by a procedure which estimates independently the analytical blank for the laboratory which made the analysis. When the data quality and spacing permit, water column inventory estimates were made for each nuclide over depth intervals appropriate to the nuclide's distribution.Funding was provided by the United States Department of Energy under Contract DE-AC02-EV03563

    Cesium and strontium isotopes in the northwestern North Atlantic and Arctic Ocean, 1981-1985

    Get PDF
    This report is a follow-up to Woods Hole Oceanographic Institution Technical Report WHOI-84-40. It contains 137cs and 90sr data from seawater samples collected on four cruises in the northwestern North Atlantic, Arctic Ocean, and Barents Sea during 1981 to 1985, and radionuclide data from samples collected on a cruise to the Norwegian-Greenland Seas in 1979. Also included are data from four ice stations in the Arctic from 1979 to 1985. The sample collections were made possible through collaborative efforts with several laboratories. The radionuclide analyses were done at WHOI.Funding was provided by the National Science Foundation under grant Number OCE-840284

    Global impact of bronchiectasis and cystic fibrosis

    Get PDF
    Educational aims To recognise the clinical and radiological presentation of the spectrum of diseases associated with bronchiectasis.; To understand variation in the aetiology, microbiology and burden of bronchiectasis and cystic fibrosis across different global healthcare systems.; Bronchiectasis is the term used to refer to dilatation of the bronchi that is usually permanent and is associated with a clinical syndrome of cough, sputum production and recurrent respiratory infections. It can be caused by a range of inherited and acquired disorders, or may be idiopathic in nature. The most well recognised inherited disorder in Western countries is cystic fibrosis (CF), an autosomal recessive condition that leads to progressive bronchiectasis, bacterial infection and premature mortality. Both bronchiectasis due to CF and bronchiectasis due to other conditions are placing an increasing burden on healthcare systems internationally. Treatments for CF are becoming more effective leading to more adult patients with complex healthcare needs. Bronchiectasis not due to CF is becoming increasingly recognised, particularly in the elderly population. Recognition is important and can lead to identification of the underlying cause, appropriate treatment and improved quality of life. The disease is highly diverse in its presentation, requiring all respiratory physicians to have knowledge of the different “bronchiectasis syndromes”. The most common aetiologies and presenting syndromes vary depending on geography, with nontuberculous mycobacterial disease predominating in some parts of North America, post-infectious and idiopathic disease predominating in Western Europe, and post-tuberculosis bronchiectasis dominating in South Asia and Eastern Europe. Ongoing global collaborative studies will greatly advance our understanding of the international impact of bronchiectasis and CF

    Quantity, composition, and source of sediment collected in sediment traps along the fringing coral reef off Molokai, Hawaii

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Pollution Bulletin 52 (2006): 1034-1047, doi:10.1016/j.marpolbul.2006.01.008.Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000–May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates > 1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    Quality of Life After Sentinel Lymph Node Biopsy or Axillary Lymph Node Dissection in Stage I/II Breast Cancer Patients: A Prospective Longitudinal Study

    Get PDF
    Background:\ud Breast cancer patients’ quality of life (QoL) after surgery has been reported to improve significantly over time. Little is known about QoL recovery after sentinel lymph node biopsy (SLNB) in comparison to axillary lymph node dissection (ALND).\ud \ud Methods:\ud 175 of 195 stage I/II breast cancer patients completed the EORTC QLQ-C30: one day before surgery (T0) and after 6 (T1), 26 (T2), 52 (T3) and 104 (T4) weeks. Of these, 54 patients underwent SLNB, 56 SLNB+ALND and 65 ALND. General linear models and paired T-tests between T0–T4 and T1–T4 were computed. Complications, radiotherapy and systemic therapy were added to the model.\ud \ud Results:\ud Significant time effects were found on physical, role and emotional functioning. Physical and role functioning decreased between T0 and T1. At T4, SLNB patients’ functioning had increased to their T0 level; ALND (+/– SLNB) patients’ functioning had increased, but had not improved to T0 level. Emotional functioning increased linearly between T0 and T4. At T4, emotional functioning was significantly higher in all groups as compared with T0. No significant group or interaction (time × group) effects were found. Complications and chemotherapy had a significant negative effect on role, emotional and cognitive functioning. Complications had a significant effect on social functioning also. Effect sizes varied between 0.00 and 0.06.\ud \ud Conclusion:\ud Two years post surgery, breast cancer patients’ QoL is comparable to that shortly before surgery. Women rated their emotional functioning as even better. SLNB is not associated with a better QoL than ALND. However, undergoing systemic therapy and/or experiencing complications affects QoL negatively

    Expression and Characterization of Drosophila Signal Peptide Peptidase-Like (sppL), a Gene That Encodes an Intramembrane Protease

    Get PDF
    Intramembrane proteases of the Signal Peptide Peptidase (SPP) family play important roles in developmental, metabolic and signaling pathways. Although vertebrates have one SPP and four SPP-like (SPPL) genes, we found that insect genomes encode one Spp and one SppL. Characterization of the Drosophila sppL gene revealed that the predicted SppL protein is a highly conserved structural homolog of the vertebrate SPPL3 proteases, with a predicted nine-transmembrane topology, an active site containing aspartyl residues within a transmembrane region, and a carboxy-terminal PAL domain. SppL protein localized to both the Golgi and ER. Whereas spp is an essential gene that is required during early larval stages and whereas spp loss-of-function reduced the unfolded protein response (UPR), sppL loss of function had no apparent phenotype. This was unexpected given that genetic knockdown phenotypes in other organisms suggested significant roles for Spp-related proteases

    Identification of Genes Required for Neural-Specific Glycosylation Using Functional Genomics

    Get PDF
    Glycosylation plays crucial regulatory roles in various biological processes such as development, immunity, and neural functions. For example, α1,3-fucosylation, the addition of a fucose moiety abundant in Drosophila neural cells, is essential for neural development, function, and behavior. However, it remains largely unknown how neural-specific α1,3-fucosylation is regulated. In the present study, we searched for genes involved in the glycosylation of a neural-specific protein using a Drosophila RNAi library. We obtained 109 genes affecting glycosylation that clustered into nine functional groups. Among them, members of the RNA regulation group were enriched by a secondary screen that identified genes specifically regulating α1,3-fucosylation. Further analyses revealed that an RNA–binding protein, second mitotic wave missing (Swm), upregulates expression of the neural-specific glycosyltransferase FucTA and facilitates its mRNA export from the nucleus. This first large-scale genetic screen for glycosylation-related genes has revealed novel regulation of fucTA mRNA in neural cells

    Poly(ADP-Ribose) Polymerase 1 (PARP-1) Regulates Ribosomal Biogenesis in Drosophila Nucleoli

    Get PDF
    Poly(ADP-ribose) polymerase 1 (PARP1), a nuclear protein, utilizes NAD to synthesize poly(AD-Pribose) (pADPr), resulting in both automodification and the modification of acceptor proteins. Substantial amounts of PARP1 and pADPr (up to 50%) are localized to the nucleolus, a subnuclear organelle known as a region for ribosome biogenesis and maturation. At present, the functional significance of PARP1 protein inside the nucleolus remains unclear. Using PARP1 mutants, we investigated the function of PARP1, pADPr, and PARP1-interacting proteins in the maintenance of nucleolus structure and functions. Our analysis shows that disruption of PARP1 enzymatic activity caused nucleolar disintegration and aberrant localization of nucleolar-specific proteins. Additionally, PARP1 mutants have increased accumulation of rRNA intermediates and a decrease in ribosome levels. Together, our data suggests that PARP1 enzymatic activity is required for targeting nucleolar proteins to the proximity of precursor rRNA; hence, PARP1 controls precursor rRNA processing, post-transcriptional modification, and pre-ribosome assembly. Based on these findings, we propose a model that explains how PARP1 activity impacts nucleolar functions and, consequently, ribosomal biogenesis
    corecore