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Abstract

Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing
coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted
in sediment collection rates > 1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves.
Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low poten-
tial for burying coral on the fore reef when accompanied by high waves.

The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide
information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate
that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accu-

mulation on the reef surface.
Published by Elsevier Ltd.
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1. Introduction

The fringing coral reef off Molokai’s southern coast
(Fig. 1) has been the focus of a comprehensive USGS study
to understand the dynamics of sediment transport and its
impact on coral health (Ogston et al.,, 2004; Storlazzi
et al., 2004a). This reef was selected in part because changes
in land use adjacent to the reef have resulted in an increase
of erosion and delivery of terrestrial sediment to the reef
system that is recognized as a potential stress to the envi-
ronmental health of the reef. The scientific literature
describing the health of coral reefs includes numerous stud-
ies that reach different conclusions concerning the impact
of suspended sediment and sedimentation. Degraded reef
health that is related to sedimentation has been shown to
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result from burial or smothering (Rogers, 1990; Nugues
and Roberts, 2003), high turbidity (Hayward, 1982; Bak,
1978), inhibition of larval settlement (Wittenberg and
Hunte, 1992), and inputs from sewage (Risk and Erdman,
2000). In some settings, sediments have no apparent nega-
tive impact because certain species have been shown to
tolerate high sediment loadings (Woolfe and Larcombe,
1998). For some species of coral that can utilize sedi-
ment-bound organic matter as a source of food (Rosenfeld
et al., 1999; Anthony, 2000), suspended sediment can be a
benefit to coral health.

The summary by Roberts (2001) of Molokai’s develop-
ment from the first Polynesian settlements, about 600 CE
to the present, describes an increasing rate of erosion
related to intensive farming, the clearing of native vegeta-
tion, and the introduction of both feral and domesticated
grazing animals. In 1934, a 1500-yard solid wharf that dis-
rupts the westerly along-shore current was constructed at
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Fig. 1. (a) Sediment trap locations along the fringing reef off Molokai and
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inset map of Hawaiian Islands. (b) A time-series sediment trap was deployed at

sites 2b and 4b at water depths of about 12 m. The trap mouth is 1.3 m above bottom. (¢) Sampling bottles from the time-series sediment trap deployed at
site 2b between November 15, 2001 and February 14, 2002. Each 500-ml bottle collected for about 4.5 days. The variability in amounts and composition of

the sediment (gray in the image) are discussed in Section 4.

Kaunakakai (Fig. 1) in the central part of Molokai’s south-
ern coast (Roberts, 2001). The resulting greater delivery of
sediment to the reef system and reduced rate of sediment
and nutrient removal by along-shore currents have been
cited as contributing factors to the low coral coverage
along one anomalous section of the reef at Kamiloloa
(Jokiel et al., 2004).

Kona (“from the south) storms are rare, but they typ-
ically contribute a large proportion of the annual rainfall to
the arid land region of central and west Molokai adjacent
to the reef system (Ogston et al., 2004). Following heavy
rains in this region, the normally dry valleys fill with sedi-
ment-laden water and discharge to the coast and reef flat.
A visible result of heavy rains is a reddish plume of
flood-discharged suspended sediment in surface waters that
extends from the shoreline to the reef crest and beyond
(Field et al., in press).

The coverage by live coral along the fore reef off the
south coast of Molokai is in the range of 90-98% along
much of its 53-km length (Jokiel, 2004), diminishing signif-
icantly at the east and west ends due to greater exposure to
large waves (Storlazzi et al., 2004b). This is the longest con-
tinuous fringing reef in the Hawaiian Island chain (Roberts,
2001). In an anomalous 6-km wide section in the central
region of the reef off the town of Kaunakakai (Fig. 1), the

coral coverage is <12% (Jokiel, 2004). This same section
of the reef is adjacent to an area of the reef flat that chron-
ically exhibits high levels of suspended sediment, but the
linkage between low coral coverage and suspended sediment
transport has not been confirmed (Ogston et al., 2004).

The objective of this study was to gain information
about the frequency, cause, and relative intensity of sedi-
ment mobility/resuspension events within the Molokai
fringing reef system using time-series sediment traps and
standard tube traps. During the 2-year period of this study,
there were two major Kona storms (November 27-28, 2001
and January 29-30, 2002). These storms brought heavy
rain (>2 cm/day) and flooding to the southern side of Mol-
okai adjacent to the reef and caused the largest waves on
the fore reef during the study period (Field et al., in press).
These storms presented an opportunity to compare
changes in composition of trapped material and thereby
to determine the contribution of flood-derived material to
resuspended sediment across the reef. The time-series traps
provided 4.5-day resolution of the amount and composi-
tion of sediment trapped before, during, and following
major storm events.

We emphasize that the information derived from sedi-
ment traps in this study is a relative measure of sediment
mobility/resuspension. This limitation should be kept in
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mind because the efficiency of traps for sequestering parti-
cles and the degree of trapping bias in favor of the more
rapidly settling particles have not been quantified in an
environment dominated by wave-induced oscillatory cur-
rents that resuspend bottom sediments. A field study by
Baker et al. (1988) described trapping characteristics in uni-
directional currents (up to 80 cm/s, similar in magnitude to
the speed of wave-induced oscillatory currents in this
study), and found that with increasing current speeds, the
efficiency of sediment trapping decreases, and the collection
bias favoring coarser, more rapidly settling particles,
increases. Their experimental design avoided the complica-
tions imposed by wave-induced currents and bottom sedi-
ment resuspension that are typical of the Molokai reef.
In the high-energy setting of the Molokai reef, near-bottom
traps (<1.3 m above bottom) do not measure ‘“‘sedimenta-
tion rate” on the reef surface, although this term is com-
monly used to describe trap results in the coral reef
literature. “Collection rate’” is a more appropriate term
because particles falling into a trap are retained in a pro-
tected environment, whereas particles falling to the reef
surface are exposed to turbulence and may be resuspended
and removed as the next wave passes.

2. Setting

Two recent papers (Ogston et al., 2004; Storlazzi et al.,
2004a) describe the geologic setting and oceanographic
conditions of the reef complex along the southern coast
of Molokai and are briefly summarized here. The reef flat
is a shallow (0-2 m) platform extending from the shoreline
to a distance up to 1.5 km seaward in the vicinity of Kau-
nakakai. The inner reef flat is covered with a thin veneer of
silty brown sediment derived mostly from the island (Cal-
houn and Field, 2002). The outer region of the reef flat
has a subdued spur-and-groove morphology with maxi-
mum relief of about 1 m (Storlazzi et al., 2003). Carbonate
sands occur in the grooves, and low-lying spurs are typi-
cally covered by algae and small amounts of live coral
(Storlazzi et al., 2004a).

The reef crest, consisting of large coral heads and coral
or algae encrusted rubble in 0-2 m water depth, is generally
well developed along the outer edge of the reef flat and
absorbs much of the energy from deep-water waves (Stor-
lazzi et al., 2004a). Sediments on the fore reef are primarily
sand-sized carbonate fragments derived from the reef
(Calhoun and Field, 2002) that exist within depressions
and crevices in the spur-and-groove reef structure.

Because of the east-west orientation of the reef system
off Molokai’s southern shore, waves influencing sediment
resuspension are from four primary sources: Northeast
Trade winds, southern swell, Kona storm swell, and North
Pacific swell (Moberly and Chaimberlin, 1964; Storlazzi
et al., 2004b). Large swells from the North Pacific refract
around the east and west ends of the island to impact Hale
O’lono and Pukoo (Fig. 1). Northeast Trade-wind-driven
waves and currents frequently resuspend the reef flat sedi-

ment. Resuspension of reef flat sediment is greatest during
periods of high tide because offshore wave energy can more
effectively propagate over the reef crest (Ogston et al., 2004;
Storlazzi et al., 2004a; Presto et al., 2006). The net flux of
sediment resuspended on the reef flat is to the southwest
and offshore along south-central Molokai (Ogston et al.,
2004).

3. Methods

Two types of sediment traps were used. The simpler tube
trap consisted of a clear plastic tube 60-cm long (reduced to
30 cm on the shallow reef flat) having an internal diameter
of 6.7 cm. A honeycomb baffle (cells 0.5-cm diameter, 7.6-
cm long) consisting of phenolic resin and treated with anti-
fouling paint was placed in the top of the traps to reduce
turbulence and to prevent fish occupation. These traps
were either hose-clamped to steel rods driven vertically into
the sediment or reef surface, attached to cinder blocks, or
fixed to an instrumented tripod. The base of the trap was
in contact with the reef surface so trap openings were
60 cm above bottom (30cm on the shallow reef flat).
Reproducibility of the collection rate measurement by tube
traps was evaluated by setting duplicate traps on seven
occasions. The average difference in collection rate between
pairs was 11%. Tube traps were used all along the fore reef
and on the reef flat.

A programmable time-series trap was also used that had
a 20-cm ID collection cylinder with an overall length of
75 cm. A funnel, placed in the bottom 15 cm of the cylin-
der, directed settling particulate material into one of 21
plastic bottles (500 ml each). The sampling bottles were
on a carousel that rotated a new sampling bottle (McLane
Research Laboratories, Inc., 2004) under the funnel after a
period of about 4.5 days (Fig. 1). The trap opening was
1.3 m above bottom. Time-series traps were positioned at
Kamiloloa (site 4a) and Palaau (site 2b) at about 12m
water depth. The time-series trap could be easily detached
from the support tripod (Fig. 1) by scuba divers for servic-
ing between deployments (~every 3 months).

Self-contained NIWA Dobie-A wave gauges were
deployed at six locations that were also occupied by sedi-
ment traps. The wave gauges were fixed to the leg of an
instrumented tripod or clamped to a mount specifically
designed to attach the gauges to the sea floor. Storlazzi
et al. (2004a) describe the methods used to evaluate the
wave spectrum and to determine dominant wave period,
significant wave height, and bottom stress. Wave orbital
velocities were calculated using Stokes second-order wave
theory. Peak wave-induced bottom shear stress was calcu-
lated using the methodology proposed by Jonsson (1966)
and Nielsen (1992).

3.1. Sample processing technique

Different methods were used for sample processing and
determination of sediment collection rate (g/m?/day)
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depending on the gross amount of material collected in each
trap. The largest samples, consisting of full tubes of sedi-
ment, were X-rayed at the Molokai General Hospital, split
lengthwise, photographed, and sub-sampled based on strati-
graphic structures using titanium tools. The more typical
trap samples were rinsed through a 1-mm plastic sieve that
removed macro algae and filamentous organic matter. The
material passing the sieve was split using a 4-funnel rotary
splitter (Honjo, 1980). Trace metal clean procedures were
used for all steps in sample preparations. Calculations of salt
content were made from measured salinity of the interstitial
water and the water loss on freeze-drying. Collection rates
are reported on a salt-free basis. Several wet splits were
retained for texture and other analyses.

3.2. Size and carbonate analysis

Wet sediment samples were sieved to separate sand and
coarser particles from the silt and clay. The sand fraction
was analyzed using a 2-m settling tube, and the silt and clay
fractions were determined using a Beckman Coulter Coun-
ter. Carbonate content was determined on dry samples
using a UIC coulometer. Details of the methods are
reported in Barber (2002).

3.3. Metal analysis

In the laboratory, sub-samples of the sediment-trap
material were freeze-dried and ground in an agate mortar
and pestle. The dry powders were completely dissolved in
acids (HF, HNO;, HCIl, and HCIO,) using a procedure
similar to the one described by Briggs and Meier (1999).
Metal concentrations were determined using an inductively
coupled plasma-mass spectrometer (ICP-MS) procedure
for multiple elements described in Lamothe et al. (1999).
The results were corrected for salt content.

3.4. Magnetic properties

Measures of the abundance of magnetite, and its mag-
netic grain size (magnetic domain state), are provided by
magnetic-property measurements (see Thompson and Old-
field, 1986). For this study, the measurements were made
on dried bulk sediment packed into 3.2-cm’ plastic cubes
and normalized for sample mass. Isothermal remanent
magnetization (IRM) is a measure of the quantity of mag-
netite having sufficiently large magnetic grain size (greater
than about 30 nm) to carry remanence following exposure
to a strong magnetic field (0.3 T in this study). Remanent
magnetization was measured using a 90-Hz spinner magne-
tometer with a sensitivity of about 10~> A/m. Anhysteretic
remanent magnetization (ARM) is another measure for
magnetite abundance, and it is particularly sensitive to
single domain and small pseudo-single domain grain sizes
of magnetite. ARM was imparted in a DC induction of
0.1 mT in the presence of a decaying alternating induction
from 100 to 0 mT.

4. Results and discussion
4.1. Tube traps

The average sediment collection rates measured for
sequential 3-month deployments between February 2000
and May 2002 (Fig. 2) indicate regional differences in sed-
iment mobility. The tube trap openings where at 0.6 m
above the bottom (MAB) except were noted. The pink
bar in each sub-plot shows the collection rates during the
deployment period that included the Kona storms of
November 2001 and January 2002. Those storms brought
exceptionally high waves to most areas along the reef and
flooding rains to the normally dry south side of Molokai.

During Kona storms the 3-month average collection
rate at 0.6 m above bottom was about 10 times higher than
during pre-storm deployment periods, but showed consid-
erable variability (Fig. 2¢). Collection rates during Kona
storms increased by 1.3 times at Palaau (site 2a) and by
39 times at Kamalo (site 6b). The traps at Hale O’lono (site
1), Kamiloloa (site 4c), and Pukoo (site 7) were full at the
time of recovery, so the collection rates during the storm
period are minimum estimates.

During the non-storm periods, collection rates in tube
traps were highest at Hale O’lono and Pukoo (about
4000 and 1500 g/m?/day, respectively) on the wave-exposed
west and east ends of the reef, and lowest at Kamalo
(5 + 2 g/m*/day). Non-Kona storm collection rates were
intermediate at Kamiloloa (site 4b, 33 =+ 10 g/m?/day)
and Palaau (site 2a, 160 + 121 g/m*/day). During the
deployment beginning in April 2001, when recovery of
wave and trap data were high, the sediment trap collection
rates at these locations varied from highest to lowest in the
same rank order as the average wave-induced bottom stress
(blue dots in Fig. 2b). This supports our assumption that
near-bottom sediment trap collection rates in the study
area are controlled primarily by resuspension of bottom
sediment in response to wave-induced bottom stress.

The increasing capacity for waves to resuspend sedi-
ments as water depth decreases is illustrated with trap
results from Kamiloloa. Traps at 4.9 m water depth (site
4c¢) collected at a rate 22 and >33 times higher than identi-
cal nearby traps at 10.1 m water depth (site 4b). For a 132-
day period, when wave data were available at both sites,
the calculated integrated bottom stress above the threshold
for resuspending mixed carbonate sand (0.11 N/m?, for 2.5
phi and finer) was about 4.6 times higher at 4.9 m than at
10.1 m.

The collection rate is also dependent on sediment avail-
ability. At Palaau, one trap was at 9.6 m water depth on a
coral spur (site 2a), which was covered by 95% living coral
with, at most, a dusting of fine sediment except in deep cre-
vices of the reef surface. The other was approximately 12 m
away at 12.6 m water depth, in a sand channel (site 2b)
floored by freshly formed ripples, an indication of active
sediment movement. Although the calculated bottom stress
on the shallower coral spur is considerably higher than in
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Fig. 2. (a) Hillshaded topographic map of Molokai showing the locations of sediment traps. (b) Collection rate (bars) during successive 3-month trap
deployments at eight locations along the reef. Data from non-storm periods are shown in blue. Data from the deployment containing Kona storms are
shown in pink when the traps at three locations were completely filled at the time of recovery. Average wave-induced bottom stress is shown in similarly
colored dots. Higher bottom stress at the wave-exposed east and west ends of the reef, and lower bottom stress in the more protected central area explain
the regional differences in collection rate. High bottom stress during Kona storms generated higher collection rates at most locations. WD is water depth in

m; MAB indicates height of trap opening in meters above bottom.

the sand channel, the collection rates were only 1/3 of those
measured in the deeper trap adjacent to a sediment supply.
On the reef flat (Fig. 2, site 5) high collection rates are
related to the combination of a large inventory of fine-
grained sediment, shallow water, wind waves, and occa-
sional long-period ocean swell that resuspended sediment
particularly at high tide (Storlazzi et al., 2004a; Ogston
et al., 2004).

4.2. Tube trap composition

The Kona storms completely filled some of the tube
traps, providing sufficient sediment volume to identify
and sample individual layers. X-rays of trap samples
(Fig. 3) were taken at the Molokai General Hospital and
photographs of split trap samples were subsequently taken
in the laboratory. Selected horizons were analyzed for
texture and carbonate content.

The sediment trap material collected from the reef flat
off Kamiloloa (Fig. 3) during the Kona storm period had
the highest non-carbonate fraction and the highest silt +

clay percentage among all the traps deployed in this pro-
gram. This trap had an average non-carbonate faction of
76% 4+ 4%, significantly above the pre-storm average of
60% 4+ 4% and a single post-storm value of 58%. This
observation is consistent with the hypothesis that land-
derived mud is delivered to south Molokai’s reef flat during
the floods that typically accompany Kona storms (Ogston
et al., 2004).

The flood signal was also measurable at locations far-
ther offshore. The sediment trap at site 4c in 4.9 m water
depth on the fore reef off Kamiloloa, 100 m seaward of
the reef crest, has a distinct horizon at 27-29 cm that is vis-
ible in the trap X-ray and in the photograph of the split
trap sample (Fig. 3 site 4c). The steep dip of this horizon
and others that are nearly parallel to it may result from a
slight tilt of the trap from vertical (typically < 10°) during
deployment that would allow rapidly settling particles to
preferentially accumulate along one side of the trap. Nei-
ther the stratigraphy nor the tilt was disturbed during col-
lection or transport from the reef to the laboratory because
the trap was completely filled with seawater and capped.
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Fig. 3. Stratigraphy of tube traps at four sites along the Molokai reef during the deployment in which Kona storms occurred. Bulk X-rays were taken of
unsplit tubes at the Molokai General Hospital. Photographs are of tube traps split lengthwise. Brackets at the sides of the photograph show the sampling
intervals (parallel to bedding planes in 4c). Sediment texture and %carbonate — %non-carbonate (NC) are indicated with pie diagrams. Water depth in
meters and meters above bottom (mab) is listed in the header for each site plot. The horizontal line at approximately 10 cm depth in the X-ray (see 4c) is
the joint between X-ray films.

The 27-29 cm horizon, sampled parallel to the horizon  other horizons in the trap. Although it is not possible to
boundaries, has significantly higher silt + clay (40%),  assign dates to deposits within the tube trap, we interpret
non-carbonate (27%), and magnetite abundance, than  this horizon as a pulse of land-derived material that was
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transported over the reef crest and deposited in the trap
during or after the storm. Compared to a horizon depos-
ited earlier, possibly before the storm, percentages of both
mud and non-carbonate in the 27-29 cm horizon increased
by a factor of 2.5, and magnetite increased by a factor of
4.5. This is the best example of presumed flood material
that accumulated in traps beyond the reef crest.

The trap at site 4c at 4.9 m (Fig. 3) is located in an
anomalous region about 6 km in length along the reef crest
where live coral coverage is <12%, as compared to 80-90%
elsewhere (Jokiel, 2004). Ogston et al. (2004) and Storlazzi
et al. (2004a) note that this anomalous region is exposed to
elevated suspended sediment concentrations resulting from
offshore transport of reef flat material resuspended by trade
wind waves, swell, and local circulation. These authors
point out, however, that a causal linkage between offshore
sediment transport and the low coverage of living coral in
this region has not been confirmed.

Tube traps from Hale O’lono and Pukoo (Fig. 3, sites 1
and 7) were completely filled during the deployment that
included Kona storms, and therefore the collection rate
estimates constitute a lower limit (>7400 g/m?*/day and
>6400 g/m?/day, respectively). The texture of the trapped
sediments at these sites is >78% sand, and the carbonate
contents within both traps fall between 87% and 94%, indi-
cating a consistent predominance of reef-derived material
in each horizon selected. There was no evidence of
increased land-derived material during the flood period
from visual or X-ray assessment of trapped sediment. At
site 7, the trapped sediments in the 29-31 cm horizon are
19% gravel-sized particles that would suggest a period of
higher wave-induced bottom stress. At site 1, in the 7-
11 cm depth interval, an increase in gravel-sized particles
in trapped sediment may also suggest higher bottom stress;
however, the increase also could result from a change in the
particle collection efficiency as the trap filled and brought
the level of accumulating sediment closer to the turbulence
at the trap opening. The instruments providing bottom
stress data at sites 1 and 7 failed during this deployment
period.

4.3. Time-series traps

The timing of sediment mobility/resuspension events at
Palaau and Kamiloloa (Fig. 1, sites 2b and 4a) can be
determined with the 4.5-day resolution of the time-series
traps. There were 15 peaks in collection rate at Palaau
when both traps were working properly (Fig. 4). Of these,
seven peaks correspond with a peak in the same sampling
interval at Kamiloloa (single red bar in both plots of
Fig. 4), and six other nearly corresponding peaks are offset
by one 4.5-day interval (blue bars in Fig. 4). The close
agreement in timing supports the expected finding that
major wave events typically impact a wide region of the
reef.

The time-series data at Palaau during the period of
Kona storms (Fig. 5) reveal a close correspondence in tim-

ing of peaks in bottom stress and collection rate. The cor-
relation between bottom stress and collection rate for each
4.5-day sampling interval is high (+* = 0.73). In this deploy-
ment however, as well as in others, there are examples of
the collection rate differing by a factor of 2, while the max-
imum bottom stress is essentially the same (bottles 12 and
17, Fig. 5). Such discrepancies illustrate the potential com-
plexities in the response of traps to parameters other than
bottom stress. These may include variations in local tide
and wind-induced currents, swell directions, and amounts
of sediment available for resuspension. Another variable
is the trap efficiency that is difficult to quantify in near-bot-
tom oscillatory currents generated by waves.

The rainfall associated with the Kona storms during
bottle intervals 3 and 17 exceeded 4 cm/day (Fig. 5) and
generated significant floods. During the interval of bottle
12, very low rainfall was recorded, yet the collection rate
was similar to interval 3. These trap samples, collected in
well-defined time intervals, were used to evaluate the influ-
ence of floods on composition and mass of trapped sedi-
ment.

4.4. Time-series traps composition

The carbonate content of the sediment trap material
clearly shows that particles collected by the traps are pre-
dominantly from the reef. At the time-series trap site on
the fore reef off Kamiloloa (Fig. 1, site 4a), most of the car-
bonate contents in pre-storm samples (August 6-Novem-
ber 24, 2001) are within the narrow range of 64-69%
(mean 66% 4 2%) with the exception of two samples at
55% and 57% (bottles 6 and 20, respectively, Fig. 6). These
low values were on samples collected when the collection
rate was <1.5 g/m?*/day, the lowest of deployment 3. Such
low collection rates imply low resuspension, high water
clarity, and a period when fine-grained, land-derived parti-
cles can settle into the traps with minimal dilution from
locally resuspended carbonate-rich bottom sediments that
make up the seabed at this location.

The carbonate content of trapped sediment collected
during the first Kona storm at Kamiloloa (Fig. 6b, bottle
4-3) is within the range of pre-storm values. This sampling
period experienced high bottom stress and high rainfall.
The sample representing the second peak in trap collection
rate (bottle 4-6) has the highest percentage carbonate, and
corresponds in time with modest bottom stress but no rain.
There is no clear explanation for the fact that the peak in
collection rate of bottle 4-6 does not match a peak in bot-
tom stress that occurs at the time of bottle 4-7. The higher
carbonate content in bottle 4-6 compared to bottle 4-3
(during the storm) may reflect carbonate sediment newly
made available from the carbonate substrate perhaps by
waves reworking the seabed during the first major wave
event.

A contribution of land-derived material in the time-
series trap at Kamiloloa is suggested from five samples
within the ellipse in Fig. 6 (bottles 4-4, -5, -7, -8, -9)
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Time-Series Trap Collection Rates with Time:
Palaau and Kamiloloa
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Fig. 4. Histogram showing the collection rates (g/m*/day) with time at Palaau and Kamiloloa. Red bars represent maxima in collection rates that are
synchronous at both locations. Blue bars represent maxima in collection rates that agree in timing at both locations within one 4.5-day sampling interval.
The green bars represent all other samples. The similarities in timing of peaks in collection rate at these two locations indicate that wide areas of the reef
are impacted by the same wave events.

Collection rate, rainfall, and wave-induced
bottom stress on the fore reef at Palaau
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Fig. 5. Palaau (site 2, Fig. 1) time-series trap collection rate, rainfall, and wave-induced bottom stress during the deployment that included two major
Kona storms and a number of minor rainfall events.
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Time-Series Traps at Kamiloloa for Deployments 3 and 4
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Fig. 6. (a) Average bottom stress during the interval of each trap bottle at Kamiloloa from August 6, 2001 to January 7, 2002 when the batteries failed. (b)
Trap collection rate and % carbonate. * Indicates two samples of small mass because collection rate was <1.5 g/m*/d. *x These five samples within ellipse
have carbonate values lower than pre-flood samples, consistent with a 10% increase in land-derived material to the trap following the Kona storm.
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Fig. 7. (a) Average bottom stress during the interval of each trap bottle at Palaau from August 6, 2001 to February 14, 2002. (b) Trap collection rate and
% carbonate. * Indicates post-storm samples at Palaau that were collected at the same time as samples from Kamiloloa circled in Fig. 6b. At Palaau the
post-flood carbonate values are the same or higher than pre-storm values, suggesting no measurable increase in land-derived material following the floods.

collected during periods of low or moderate collection rates  nificantly lower than the pre-storm average of 66%. The
following the major storm represented in bottle 4-3. The compositional shift from 66% to 61% carbonate suggests
average carbonate value of these samples is 61% + 2%, sig- a minor increase in the proportion of land-derived material
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collected in the trap following the high runoff event from
the island.

At Palaau (Fig. 1, site 2a), the average concentration of
carbonate in pre-storm samples (76 &+ 2%) is identical to
the post-Kona storm samples (Fig. 7b; bottles 4-4 through
4-9). Hence there is no signal from the flood-derived sedi-
ment in the time-series trap samples at this location. The
typically higher collection rate at Palaau (compared to
Kamiloloa) may more effectively dilute any new material
added by the flood. It is interesting to note that the average
carbonate content in samples from December 30, 2001 to
the end of the deployment is slightly higher (82 + 3%) than
the samples collected before or immediately after the first
Kona storm. This may be another case where storm waves
reworked the carbonate substrate and increased the avail-
ability of high carbonate sediment for subsequent resus-
pension, transport, and collection.

The minor change in the composition of trapped sedi-
ment collected on the fore reef off Kamiloloa during the
flood period, and the lack of compositional change at
Palaau, suggest that land-derived sediment delivered dur-
ing a major flood and wave event has a low potential for
burying or smothering coral on the fore reef. The potential
for settling particles to be retained in sediment traps is
much greater than on the adjacent turbulence-exposed sur-
face of the coral reef. The evidence that flood-derived mate-
rial does not accumulate in traps along the fore reef in
sufficient quantity to significantly change composition,
indicates that this material is unlikely to accumulate on
the adjacent surface of living corals.

Turbidity associated with transient suspended sediment
on the fore reef may be a source of incremental stress to
reef health (Rogers, 1990). The frequency and relative mag-
nitude of events inferred from the time-series sediment trap
collections suggest that the fore reef is often exposed to
increased turbidity from resuspended bottom sediments.
Turbidity in surface water over the fore reef was also doc-
umented by photography of sediment-laden plumes follow-
ing the rare Kona storms (Field et al., in press), or of
plumes generated on the reef flat when high-wind events
coincided with high tide (Ogston et al., 2004; Storlazzi
et al., 2004a). The variability in light levels needed for pho-
tosynthesis by the algae living in coral of the fore reef was
not measured, but these observations suggest that turbidity
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is introduced periodically to both surface and bottom
waters and would at least temporarily reduce light levels.

4.5. Metal concentrations in sediment trap material

The concentrations of metals in trapped sediments are
low (Table 1) compared to the toxic effects guidelines that
are often used to estimate the degree of contamination in
coastal sediments by regulatory agencies (Long et al.,
1995). None exceed the ERM (effects range — medium)
guideline, and the average concentrations are below the
ERL (effects range — low) values except for arsenic, which
is 4 ppm above the ERL. Low concentrations of heavy
metals are not surprising because there are no mining or
metal-related industries on Molokai, and there are no
ocean outfalls for sewage. Sewage from the town of Kau-
nakakai (950 m?®/day from a population of 2700) undergoes
secondary treatment with disposal of dry sludge to a land-
fill and discharge of treated effluent into injection wells. An
impact on the reef from seaward migration of groundwater
containing sewage effluent from the treatment plant or
from private septic systems outside of the Kaunakakai dis-
trict has not been observed (John Souza, Department of
Waste Water Reclamation, Molokai, personal communica-
tion, 2004).

The concentrations of heavy metals correlate strongly
with concentrations of Fe, one of the major elements in
Molokai’s basaltic red soil, indicating that they are associ-
ated with the land-derived fraction of the trapped sedi-
ment. The plot of Cu against Fe in trap samples defines
two populations (Fig. 8) and provides insight into sediment
transport processes in this reef system. The data group with
lower slope contains trap results from a transect off Kami-
loloa (Fig. 2; 0.9 m, 4.9 m, and 11.5 m water depths). The
nearly constant Cu/Fe ratio from inshore to offshore sup-
ports the conclusion of Storlazzi et al. (2004a) and Ogston
et al. (2004) that there is some cross-reef transport of sus-
pended sediment from the reef flat to beyond the reef crest.
The second data group of samples, primarily from Palaau,
has a distinctly higher slope. Both data groups have sam-
ples from before, during, and after the Kona storms. The
fact that there is no difference in slope following the
storm, suggests that the composition (as defined by the
Cu/Fe ratio) of the 2001 storm material is not appreciably

Table 1
Average concentrations of metals (ppm dry weight, salt free) in sediment trap samples from Molokai compared to toxicity guidelines

Arsenic Cadmium Chromium Copper? Mercury?® Nickel Silver® Lead Zinc?
This Study
Mean 12.0 0.053 32.6 10.4 0.023 16.6 0.19 2.9 31.2
Std. dev. 4.1 0.048 17.6 6.4 0.007 4.5 0.28 1.8 31.1
ERM" 70 9.6 370 270 0.71 51.8 3.7 218 410
ERL® 8.2 2.1 81 34 0.15 20.9 1 46.7 150

& Mean values are slightly elevated because the detection limit was assigned to concentrations below analytical detection.

® Toxicity guidelines from Long et al. (1995).



1044 M.H. Bothner et al. | Marine Pollution Bulletin 52 (2006) 1034—-1047

Iron vs. Copper in Sediment Trap Samples from Molokai
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Fig. 8. The concentrations of iron and copper are highly correlated within
trap samples from Palaau (squares, dashed line) and Kamiloloa (triangles,
solid line). The different slopes suggest a different composition and source
of the land-derived material. The range of metal concentrations reflects
variable dilution by reef-derived carbonate sediment. Flood period data
are shown in solid symbols, pre- and post-flood data in open symbols. The
high linearity in Cu/Fe ratio among trap samples from flood and non-
flood periods suggests that composition was not changed by the floods.

different than material previously added to the reef system.
The clearly different Cu/Fe slopes at Kamiloloa and Palaau
suggest the influence of a different land-derived source for
each of these two locations.

4.6. Magnetic properties of sediment trap material

Magnetic properties in coastal sediments off Molokai
are a specific indication of the land-derived component
because the biogenic carbonate is non-magnetic. The volca-
nic rocks forming the Hawaiian Islands contain magnetite
that imparts characteristic magnetic properties to the
volcanic rocks and to the soils that develop from them.
Land-derived particles carry their magnetic signature,
potentially altered by weathering processes, as they are
transported to and within the coastal ocean by streams,
wind, and currents. The magnetic properties of the trapped
sediment provide additional evidence of land-derived mate-
rial at all locations along the reef with no change in compo-
sition following Kona storms.

From a comprehensive magnetic analysis on selected
sediment trap samples, two properties, isothermal rema-
nent magnetization (IRM) and anhysteretic remanent mag-
netization (ARM), were found to provide the most useful
information about trends along the reef. IRM and ARM
were easily detected in all the samples of trapped sediment,
indicating that land-derived magnetite makes up a measur-
able fraction of the actively mobile sediment throughout
the reef system. IRM increases as carbonate decreases at
both Kamiloloa and Palaau fore reef sites, but with differ-
ent slopes (Fig. 9). These linear relations are interpreted to
be mixing lines with a land-derived end-member having
higher concentration of magnetite at Kamiloloa than at
Palaau.

Isothermal remanent magnetization (IRM) vs % Carbonate
in trap samples from Palaauand Kamiloloa
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Fig. 9. The different regression lines for isothermal remanent magnetiza-
tion (IRM) vs. % calcium carbonate in trap samples from Palaau (site 2;
squares, dashed line) and Kamiloloa (site 4;triangles, solid line) indicate
higher magnetite concentration in the land-derived sediment at Kami-
loloa. Data from flood periods (solid symbols) plot with the same slope as
data from pre- and post-flood periods (open symbols). These trends
provide further evidence that floods did not significantly alter the
composition of trapped sediment.

The relationships in Fig. 9 include storm and non-storm
samples on the fore reef. There are no significant or consis-
tent increases in IRM (magnetite) relative to carbonate in
trap samples collected during or after storms. This suggests
that the Kona storms did not markedly increase the land-
derived component of suspended sediments that are
captured by traps on the fore reef. This conclusion is
supported by the uniform non-carbonate percentage in
pre- and post-storm samples.

The ARM/IRM ratio provides information about mag-
netic grain size of a population of magnetic grains, inde-
pendent of the abundance of magnetic minerals. ARM/
IRM values increase with decreasing magnetic grain size.
Magnetic grain size can be influenced by a number of fac-
tors, among them the cooling history of the igneous rock in
which magnetic minerals formed and by the influence of
weathering or other types of alteration such as diagenesis
involving post-depositional destruction of magnetite. Pet-
rographic examination of trap samples shows no evidence
of post-depositional alteration. ARM/IRM is independent
of dilution by carbonate sediments and may be used as an
indicator of sediment source in this reef system. Plots of
ARM/IRM ratios against carbonate show the similarity
of values within sample sites and the differences between
sites (Fig. 10).

In trap samples from Palaau the ARM/IRM ratios
range from 0.057 to 0.066 and are the highest within this
study area. There is no difference between samples collected
during tranquil periods of low collection rate (low bottom
stress) or during the combined wave and flood events at the
end of the study period.
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Magnetic Properties (ARM/IRM)
of Sediment Trap Material
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Fig. 10. Plot of the ARM/IRM ratio vs. % carbonate (ARM/IRM =
anhysteretic remanent magnetization to isothermal remanent magnetiza-
tion at 0.3 T). Ellipses include flood (solid symbol) and non-flood (open
symbol) samples from discrete areas. Results from Palaau cluster closely
together suggesting a unique source, character, or weathering history of
the magnetic particles in the resuspended sediments from Palaau.

At Kamiloloa, 12 km to the east from Palaau, ARM/
IRM ratios are between 0.027 and 0.040 at both the inshore
reef flat location (1 m water depth) and at the fore reef
location (10.1 m water depth). Sediment traps at the east
and west end of the reef, Pukoo and Hale O’lono, respec-
tively, have similar but low ARM/IRM ratios (0.021-
0.032).

The groupings of ARM/IRM ratios in sediment traps in
different geographic regions could reflect distinct properties
of volcanic rocks in the local source areas, a different
weathering history of the particles in rock and (or) soil, dif-
ferent stages of sorting during particle transport, or some
combination of all three factors. Although these possible
explanations have not yet been tested, we note a number
of unique aspects of the land surface adjacent to Palaau
traps that may influence magnetic properties of sediments
entering the sea. The land surface at Palaau is characterized
by low relief, by a high degree of bedrock weathering, and
by agricultural activity over wide areas, some with three
growing cycles per year. These factors indicate a system
vulnerable to low-energy sediment transport processes
from an altered, frequently tilled surface.

The direction of fine-grained suspended sediment trans-
port measured by seabed instrumentation on the reef flat
and on the fore reef at Kamiloloa is both across reef and
along reef to the west (Ogston et al., 2004; Storlazzi
et al., 2004a). The similar ARM/IRM ratios for reef flat
and fore reef locations off Kamiloloa are consistent with
cross-shelf transport of particles. The different ARM/
IRM ratios for Kamiloloa and Palaau are interpreted to
indicate a lack of sediment transport between these two
sites for the type of sediment preferentially collected by

traps. The Kaunakakai wharf between Kamiloloa and Pal-
aau (Fig. 1) may be an impediment to the east-to-west
transport of resuspended particles collected in traps.

5. Summary and conclusions

1. Land-derived sediment, identified by the non-carbonate
fraction and the presence of magnetite, is a ubiquitous
component of sediment trap material collected from all
trap sites within the Molokai reef system. This indicates
that fine-grained terrestrial sediment is constantly mov-
ing through the Molokai reef system. It represents
approximately 70% of the total sediment trap material
on the reef flat off Kamiloloa and 6-40% on the fore
reef.

2. Following the Kona storms and floods beginning in late
November 2001, we measured an increase in the land-
derived fraction in trapped sediment at three trap sites
in a transect off Kamiloloa. The floods appeared to
recharge the reef flat with land-derived material, increas-
ing the land-derived fraction from 59% to 75%. A trap at
5 m water depth on the fore reef documented transport
of land-derived material over the reef crest and onto the
fore reef. The trap at 11.5 m water depth at Kamiloloa
showed only a minor increase in the land-derived frac-
tion and no increases were observed at other 10-12 m
trap sites along the reef crest. These patterns indicate
that land-derived sediment delivered during a major
flood accompanied by high waves has a low potential
for burying or smothering coral on the fore reef. One
potential impact of flood-derived sediment would poten-
tially be periodic high turbidity and exposure of coral to
the suspended fine-grained particles. Although specific
measurements of these parameters were not made, they
are not expected to be significant because flood-derived
high turbidity has a duration of only a few days (Field
et al., in press), and the toxic-metal concentrations are
low in trap samples containing the highest fraction of
flood-derived sediment.

3. We observed consistent regional differences in the rela-
tive magnitude of sediment collection rates that corre-
lated with regional differences in wave-induced bottom
stress. This observation indicates that waves are the
primary cause of sediment resuspension. Among the
different areas along the reef, the following order of
resuspension intensity was observed from highest to
lowest: Hale O’lono, Pukoo, Palaau, Kamiloloa, and
Kamalo. This order reflects the greater wave exposure
on the west and east ends of the reef and the more tran-
quil central region that is partially sheltered by neigh-
boring islands.

4. During the deployment of tube traps that included the
Kona storms of November 2001 and January 2002,
the 3-month average collection rates were higher than
during non-storm periods by 1.3x at Palaau and 39x
at Kamalo. At Kamiloloa, Hale O’lono, and Pukoo



1046 M.H. Bothner et al. | Marine Pollution Bulletin 52 (2006) 1034—-1047

the collection rates were at least 10x higher during the
storm than non-storm periods. At these sites the tube
traps were completely filled prior to recovery, thus pro-
viding a minimum estimate. The time-series traps with
4.5-day resolution revealed that Kona storms increased
the collection rate by more than a factor of 1000x com-
pared to non-storm intervals. Good agreement was
observed in the timing of peak resuspension events mea-
sured in time-series traps at two locations 12.3 km
apart. This observation indicated that the same wave
events caused resuspension along wide areas of the fore
reef.

5. A high correlation coefficient (+* = 0.73) was measured
between wave-induced bottom stress and collection rate
in time-series traps at Palaau during the deployment
containing Kona storms. Lower correlations during
other deployments indicate that factors other than bot-
tom stress may influence the trap collection rate in this
energetic coastal area. Important potential factors that
were not documented include speed and direction of
local currents, wave direction, sediment availability,
and the differences in collection efficiency of traps in
oscillatory currents.

6. The ratio of anhysteretic remanent magnetization
(ARM) to isothermal remanent magnetization (IRM)
indicates magnetic grain size in a population of magnetic
grains, independent of the abundance of magnetic min-
erals or dilution by carbonate. This ratio is distinct and
uniform in a transect from the reef flat to beyond the
reef crest at Kamiloloa, supporting the hypothesis of
some cross-reef transport (Ogston et al., 2004; Storlazzi
et al., 2004a). Off Palaau, the ratio is highest and within
a narrow range. Identification of the source of particles
at Palaau with the distinctive magnetic signature will be
part of a continuing study.

7. The concentrations of heavy metals in the trapped sedi-
ment within the reef system off Molokai are well below
effects range-medium (ERM) toxicity guidelines for
coastal sediments (Long et al., 1995). Specific guidelines
for metal concentrations in sediments keyed to health of
coral, however, do not yet exist. The Cu/Fe ratios in
trapped sediment may be another index, similar to mag-
netic signatures, that may identify different source areas
of land-derived material to the reef system.
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