259 research outputs found

    Impact of Raman amplification on a 2 Tb/s coherent WDM system

    Get PDF
    The impact of hybrid erbium-doped fiber amplifier (EDFA)/Raman amplification on a spectrally efficient coherent-wavelength-division-multiplexed (CoWDM) optical communication system is experimentally studied and modeled. Simulations suggested that 23-dB Raman gain over an unrepeatered span of 124 km single-mode fiber would allow a decrease of the mean input power of ~6 dB for a fixed bit-error rate (BER). Experimentally we demonstrated 1.2-dB Q-factor improvement for a 2-Tb/s seven-band CoWDM with backward Raman amplification. The system delivered an optical signal-to-noise ratio of 35 dB at the output of the receiver preamplifier providing a worst-case BER of 2 × 10 -6 over 49 subcarriers at 42.8 Gbaud, leaving a system margin (in terms of Q -factor) of ~4 dB from the forward-error correction threshold

    Genetic Connectivity and Diversity of a Protected, Habitat-Forming Species:Evidence Demonstrating the Need for Wider Environmental Protection and Integration of the Marine Protected Area Network

    Get PDF
    Funding Information: This work was largely funded by Heriot-Watt University (James Watt Scholarship) and NatureScot (formerly Scottish Natural Heritage). Additional funding was received from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged. MASTS was funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.Peer reviewedPublisher PD

    Clinical features and molecular genetic analysis in a Turkish family with oral white sponge nevus

    Get PDF
    Oral white sponge nevus (WSN) is a rare autosomal dominant benign condition, characterized by asymptomatic spongy white plaques. Mutations in Keratin 4 (KRT4) and 13 (KRT13) have been shown to cause WSN. Familial cases are uncommon due to irregular penetrance. Thus, the aim of the study was: a) to demonstrate the clinical and histopathological features of a three-generation Turkish family with oral WSN b) to determine whether KRT4 or KRT13 gene mutation was the molecular basis of WSN. Out of twenty members of the family ten were available for assessment. Venous blood samples from six affected and five unaffected members and 48 healthy controls were obtained for genetic mutational analysis. Polymerase chain reaction was used to amplify all exons within KRT4 and KRT13 genes. These products were sequenced and the data was examined for mutations and polymorphisms. Varying presentation and severity of clinical features were observed. Analysis of the KRT13 gene revealed the sequence variant Y118D as the disease-causing mutation. One patient revealed several previously unreported polymorphisms including a novel mutation in exon 1 of the KRT13 gene and a heterozygous deletion in exon 1 of KRT4. This deletion in the KRT4 gene was found to be a common polymorphism reflecting a high allele frequency of 31.25% in the Turkish population. Oral WSN may manifest variable clinical features. The novel mutation found in the KRT13 gene is believed to add evidence for a mutational hotspot in the mucosal keratins. Molecular genetic analysis is required to establish correct diagnosis and appropriate genetic consultation

    All-optical OFDM and distributed Raman amplification:challenges to enable high capacities and extend reach

    Get PDF
    We review recent advances in all-optical OFDM technologies and discuss the performance of a field trial of a 2 Tbit/s Coherent WDM over 124 km with distributed Raman amplification. The results indicate that careful optimisation of the Raman pumps is essential. We also consider how all-optical OFDM systems perform favourably against energy consumption when compared with alternative coherent detection schemes. We argue that, in an energy constrained high-capacity transmission system, direct detected all-optical OFDM with `ideal' Raman amplification is an attractive candidate for metro area datacentre interconnects with ~100 km fibre spans, with an overall energy requirement at least three times lower than coherent detection techniques

    Complete structure of the chemosensory array core signalling unit in an E. coli 1 minicell strain

    Get PDF
    Motile bacteria sense chemical gradients with transmembrane receptors organised in supramolecular signalling arrays. Understanding stimulus detection and transmission at the molecular level requires precise structural characterisation of the array building block known as a core signalling unit. Here we introduce an Escherichia coli strain that forms small minicells possessing extended and highly ordered chemosensory arrays. We use cryo-electron tomography and subtomogram averaging to provide a three-dimensional map of a complete core signalling unit, with visible densities corresponding to the HAMP and periplasmic domains. This map, combined with previously determined high resolution structures and molecular dynamics simulations, yields a molecular model of the transmembrane core signalling unit and enables spatial localisation of its individual domains. Our work thus offers a solid structural basis for the interpretation of a wide range of existing data and the design of further experiments to elucidate signalling mechanisms within the core signalling unit and larger array

    Effect of Pregnancy and the Postpartum Period on Adherence to Antiretroviral Therapy Among HIV-Infected Women Established on Treatment

    Get PDF
    Among women who become pregnant after initiating highly active antiretroviral therapy (HAART), few data describe the effect of pregnancy and postpartum on adherence. We conducted a retrospective clinical cohort study among therapy-naive women (ages 18–45) initiating HAART in Johannesburg, South Africa. Among 7,510 women in our analysis, 896 experienced a pregnancy after starting HAART. Compared to non-pregnant periods of follow-up, there was an increased risk of non-adherence during the postpartum period (weighted risk ratio (RR): 1.46, 95% confidence interval (CI): 1.17, 1.82), but not during pregnancy itself (weighted RR: 0.95, 95% CI: 0.78, 1.17)

    Mercury's Sodium Exosphere: Observations during the MESSENGER Orbital Phase

    Get PDF
    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered into orbit about Mercury on March 18,2011. We now have approximately five Mercury years of data from orbit. Prior to the MESSENGER mission, Mercury's surface-bounded exosphere was known to contain H, He, Na. K, and Ca. The Ultraviolet and Visible Spectrometer (UVVS) began routine orbital observations of both the dayside and nightside exosphere on March 29. 2011, measuring altitude profiles for all previously detected neutral species except for He and K. We focus here on what we have learned about the sodium exosphere: its spatial, seasonal, and sporadic variation. Observations to date permit delineation of the relative roles of photon-stimulated desorption (PSD) and impact vaporization (IV) from seasonal and spatial effects, as well as of the roles of ions both as sputtering agents and in their possible role to enhance the efficiency of PSD. Correlations of Mercury's neutral sodium exosphere with measurements from MESSENGER's Magnetometer (MAG) and Energetic Particle and Plasma Spectrometer (EPPS) provide insight into the roles of ions and electrons. Models incorporating MAG observations provide a basis for identifying the location and area of the surface exposed to solar wind plasma, and EPPS observations reveal episodic populations of energetic electrons in the magnetosphere and the presence of planetary He(+), 0(+), and Na(+)
    corecore