479 research outputs found

    HeII emitters in the VIMOS VLT Deep Survey: PopIII star formation or peculiar stellar populations in galaxies at 2<z<4.6?

    Get PDF
    The aim of this work is to identify HeII emitters at 2<z<4.6 and to constrain the source of the hard ionizing continuum that powers the HeII emission. We have assembled a sample of 277 galaxies with a high quality spectroscopic redshift at 2<z<4.6 from the VVDS survey, and we have identified 39 HeII1640A emitters. We study their spectral properties, measuring the fluxes, equivalent widths (EW) and FWHM for most relevant lines. About 10% of galaxies at z~3 show HeII in emission, with rest frame equivalent widths EW0~1-7A, equally distributed between galaxies with Lya in emission or in absorption. We find 11 high-quality HeII emitters with unresolved HeII line (FWHM_0<1200km/s), 13 high-quality emitters with broad He II emission (FWHM_0>1200km/s), 3 AGN, and an additional 12 possible HeII emitters. The properties of the individual broad emitters are in agreement with expectations from a W-R model. On the contrary, the properties of the narrow emitters are not compatible with such model, neither with predictions of gravitational cooling radiation produced by gas accretion. Rather, we find that the EW of the narrow HeII line emitters are in agreement with expectations for a PopIII star formation, if the episode of star formation is continuous, and we calculate that a PopIII SFR of 0.1-10 Mo yr-1 only is enough to sustain the observed HeII flux. We conclude that narrow HeII emitters are either powered by the ionizing flux from a stellar population rare at z~0 but much more common at z~3, or by PopIII star formation. As proposed by Tornatore et al. (2007), incomplete ISM mixing may leave some small pockets of pristine gas at the periphery of galaxies from which PopIII may form, even down to z~2 or lower. If this interpretation is correct, we measure at z~3 a SFRD in PopIII stars of 10^6Mo yr^-1 Mpc^-3 qualitatively comparable to the value predicted by Tornatore et al. (2007).Comment: accepted for publication in A&

    A Coherent Study of Emission Lines from Broad-Band Photometry: Specific Star-Formation Rates and [OIII]/H{\beta} Ratio at 3 < z < 6

    Get PDF
    We measure the H{\alpha} and [OIII] emission line properties as well as specific star-formation rates (sSFR) of spectroscopically confirmed 3<z<6 galaxies in COSMOS from their observed colors vs. redshift evolution. Our model describes consistently the ensemble of galaxies including intrinsic properties (age, metallicity, star-formation history), dust-attenuation, and optical emission lines. We forward-model the measured H{\alpha} equivalent-widths (EW) to obtain the sSFR out to z~6 without stellar mass fitting. We find a strongly increasing rest-frame H{\alpha} EW that is flattening off above z~2.5 with average EWs of 300-600A at z~6. The sSFR is increasing proportional to (1+z)^2.4 at z<2.2 and (1+z)^1.5 at higher redshifts, indicative of a fast mass build-up in high-z galaxies within e-folding times of 100-200Myr at z~6. The redshift evolution at z>3 cannot be fully explained in a picture of cold accretion driven growth. We find a progressively increasing [OIII]{\lambda}5007/H{\beta} ratio out to z~6, consistent with the ratios in local galaxies selected by increasing H{\alpha} EW (i.e., sSFR). This demonstrates the potential of using "local high-z analogs" to investigate the spectroscopic properties and relations of galaxies in the re-ionization epoch.Comment: 18 pages, 11 figures, 3 table

    The extended epoch of galaxy formation: age dating of ~3600 galaxies with 2<z<6.5 in the VIMOS Ultra-Deep Survey

    Get PDF
    We aim at improving constraints on the epoch of galaxy formation by measuring the ages of 3597 galaxies with spectroscopic redshifts 2<z<6.5 in the VIMOS Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the simultaneous fitting with the GOSSIP+ software of observed UV rest-frame spectra and photometric data from the u-band up to 4.5 microns using composite stellar population models. We conclude from extensive simulations that at z>2 the joint analysis of spectroscopy and photometry combined with restricted age possibilities when taking into account the age of the Universe substantially reduces systematic uncertainties and degeneracies in the age derivation. We find galaxy ages ranging from very young with a few tens of million years to substantially evolved with ages up to ~1.5-2 Gyr. The formation redshifts z_f derived from the measured ages indicate that galaxies may have started forming stars as early as z_f~15. We produce the formation redshift function (FzF), the number of galaxies per unit volume formed at a redshift z_f, and compare the FzF in increasing redshift bins finding a remarkably constant 'universal' FzF. The FzF is parametrized with (1+z)^\zeta, with \zeta~0.58+/-0.06, indicating a smooth 2 dex increase from z~15 to z~2. Remarkably this observed increase is of the same order as the observed rise in the star formation rate density (SFRD). The ratio of the SFRD with the FzF gives an average SFR per galaxy of ~7-17Msun/yr at z~4-6, in agreement with the measured SFR for galaxies at these redshifts. From the smooth rise in the FzF we infer that the period of galaxy formation extends from the highest possible redshifts that we can probe at z~15 down to redshifts z~2. This indicates that galaxy formation is a continuous process over cosmic time, with a higher number of galaxies forming at the peak in SFRD at z~2 than at earlier epochs. (Abridged)Comment: Submitted to A&A, 24 page

    Tracking the transfer of antimicrobial resistance genes from raw materials to sourdough breads

    Get PDF
    The present study hypothesizes that raw materials used in bread making can transfer antibiotic resistance genes (ARGs) to processed breads. Four types of flour and four types of semolina were purchased from supermarkets and inoculated with a commercial dried sourdough starter to make breads. The microbiological characteristics of all raw materials and fermented doughs were investigated. The levels of yeasts and lactic acid bacteria (LAB) increased up to 107 CFU/g. The values of pH decreased to 4.54–4.86 while total titratable acidity increased inversely. All unprocessed and processed samples, including breads, were analyzed by a molecular approach to detect bacterial and fungal DNAs and 17 antibiotic resistance genes for penicillins, macrolides, tetracyclines, and chloramphenicol. Illumina technology showed that the operational taxonomy units (OTUs) identified from unprocessed wheat milling products, fermented doughs, and baked products mainly belonged to Acetobacteraceae. Enterococci were present in all doughs. After baking, the relative abundance (RA)% of Enterococcus and Acetobacteraceae decreased. The DNA analyzed for fungal composition showed that Kazachstania humilis dominated dried sourdough starter and doughs, and its OTUs were also detected at high RA% in baked products. The search for ARGs revealed that all samples analyzed did not show resistance to penicillins, chloramphenicol, and macrolides. However, three of the semolinas included in this study (S1, S3 and S4) and the corresponding doughs (SD1, SD3 and SD4) were positive for tet(A) and tet(B) resistance genes. This work indicated that breads have a limited role in the dissemination of ARG

    The Cosmic Evolution Survey (COSMOS): a large-scale structure at z=0.73 and the relation of galaxy morphologies to local environment

    Get PDF
    We have identified a large-scale structure at z~0.73 in the COSMOS field, coherently described by the distribution of galaxy photometric redshifts, an ACS weak-lensing convergence map and the distribution of extended X-ray sources in a mosaic of XMM observations. The main peak seen in these maps corresponds to a rich cluster with Tx= 3.51+0.60/-0.46 keV and Lx=(1.56+/-0.04) x 10^{44} erg/s ([0.1-2.4] keV band). We estimate an X-ray mass within r500r500 corresponding to M500~1.6 x 10^{14} Msun and a total lensing mass (extrapolated by fitting a NFW profile) M(NFW)=(6+/-3) x 10^15 Msun. We use an automated morphological classification of all galaxies brighter than I_AB=24 over the structure area to measure the fraction of early-type objects as a function of local projected density Sigma_10, based on photometric redshifts derived from ground-based deep multi-band photometry. We recover a robust morphology-density relation at this redshift, indicating, for comparable local densities, a smaller fraction of early-type galaxies than today. Interestingly, this difference is less strong at the highest densities and becomes more severe in intermediate environments. We also find, however, local "inversions'' of the observed global relation, possibly driven by the large-scale environment. In particular, we find direct correspondence of a large concentration of disk galaxies to (the colder side of) a possible shock region detected in the X-ray temperature map and surface brightness distribution of the dominant cluster. We interpret this as potential evidence of shock-induced star formation in existing galaxy disks, during the ongoing merger between two sub-clusters.Comment: 15 pages (emulateapj style), 16 figs (low res.); to appear in the ApJ Supplement COSMOS Special Issue. Low-resolution figures; full resolution version available at: http://www.astro.caltech.edu/~cosmos/publications/files/guzzo_0701482.pd

    Tracking the transfer of antimicrobial resistance genes from raw materials to sourdough breads

    Get PDF
    The present study hypothesizes that raw materials used in bread making can transfer antibiotic resistance genes (ARGs) to processed breads. Four types of flour and four types of semolina were purchased from supermarkets and inoculated with a commercial dried sourdough starter to make breads. The microbiological characteristics of all raw materials and fermented doughs were investigated. The levels of yeasts and lactic acid bacteria (LAB) increased up to 107 CFU/g. The values of pH decreased to 4.54–4.86 while total titratable acidity increased inversely. All unprocessed and processed samples, including breads, were analyzed by a molecular approach to detect bacterial and fungal DNAs and 17 antibiotic resistance genes for penicillins, macrolides, tetracyclines, and chloramphenicol. Illumina technology showed that the operational taxonomy units (OTUs) identified from unprocessed wheat milling products, fermented doughs, and baked products mainly belonged to Acetobacteraceae. Enterococci were present in all doughs. After baking, the relative abundance (RA)% of Enterococcus and Acetobacteraceae decreased. The DNA analyzed for fungal composition showed that Kazachstania humilis dominated dried sourdough starter and doughs, and its OTUs were also detected at high RA% in baked products. The search for ARGs revealed that all samples analyzed did not show resistance to penicillins, chloramphenicol, and macrolides. However, three of the semolinas included in this study (S1, S3 and S4) and the corresponding doughs (SD1, SD3 and SD4) were positive for tet(A) and tet(B) resistance genes. This work indicated that breads have a limited role in the dissemination of ARGs
    • 

    corecore